

4th year Introduction to Research Project

Modelling and sizing of Proton Exchange

Membrane Fuel Cells (PEMFC)

Scientific report

(Paul Aubert) Abroad during S8

Félix Bonnes
Mathis De Malvin De Montazet

Justin Lombard

4th year Mechanical Engineering/ME

14th May 2023

Tutor: Ion Hazyuk

Abstract

Among all the technologies that currently exist, Proton Exchange Membrane Fuel Cell (PEMFC) has

the best characteristics for transportation purposes. As PEMFCs are very complex systems, the
architecture can be chosen and optimized for different working conditions depending on the usage and

environment constraints. As PEMFCs are not yet widely used, very few models are currently available

on sizing software. Mainly for educational purposes, we developed a PEMFC dimensioning script, to

predict optimised performance and configuration of a stack, and a simulation model to provide a means
of manipulating the different configurations of the entire system. We elaborated a complete analytical

model from each component governing equations and electrochemical laws. The python implementation

as well as the simulation model consisted in an ordered assembly of these sub-system equations. By
making some simple assumptions, we were able to reduce the computational requirements of the model,

making it suitable for simulating an entire fuel-cell stack as part of an energy system. The model has

been tested and emulates experimental data well across the current density range. We have obtained a
user-friendly simulation tool that allows for the exploration of the influence of each specific system

component.

Keywords:

- PEMFC

- Pre-dimensioning tool

- Hydrogen fuel cell
- Hydrogen reduction with oxygen

- V-I diagram

- Electrochemistry
- Modelica library

1

Introduction

In the frame of a global energy transition, the development of new technologies in the field of
power systems and electrification is mandatory. A very promising technology is the fuel cell. Fuel cells

produce electricity with an easily storable fuel, like hydrogen, methanol, ect. Such a system is designed

to be integrated in transport and to assist or even replace batteries which are not adapted for a massive

electrification in this field. Fuel cell systems are complex and made of different sub-systems. The main
sub-system is the fuel cell stack. A chemical reaction will take place in this component. To obtain the

best efficiency, the reactants must be in very specific thermodynamic conditions. Then, a comprehensive

system is an architecture composed by compressors, heat exchangers, turbines, pressure regulators, ect.

For the conception of such complex systems, we used a “V” conception cycle, as depicted in the

figure below:

Fig.1: The “V” conception cycle [1]

On the left side of the “V”, the conceptor aims to size a system which corresponds to the
specifications of the customer, going more and more in the details, until reaching the bottom of the “V”.

Then, the conceptor needs to verify the designed system: does it reach the initial targeted performances?

Do the different subsystems work well together? This second part of the conception cycle aims to

perform different simulations on the system, to test it and to validate its specifications.

The purpose of our project is to build tools in order to carry out such “V” conception cycles, and

make them accessible and understandable for educational cases of use.

This report describes the work done as part of this project led by Dr Ion Hazyuk at Institut Clement

Ader. The project was divided in two distinct parts, led independently:
- Develop a sizing tool on Python for Proton Exchange Membrane Fuel Cell (PEMFC)
- Create a library of components on a multiphysical simulation software for the modelling and

simulation of PEMFC systems

2

For the sizing tool, we will detail the implementation, in the code, of the equations found during

the literature review. We will also provide the first results obtained, and discuss their relevance by
comparing them with already existing systems. Concerning the simulation tool, we will present an

overview of the components chosen or coded to build the library. We won’t be able to provide results

as we have not finished this aspect of the research project yet.

3

Sizing tool

1. Introduction to the sizing tool

As the two aspects of the project are led independently, this paper will firstly report the work done

for the sizing tool before moving onto the simulation tool.

This tool aims to dimension the PEMFC stack only, it does not deal with the different subsystems

needed to make the stack work well. Thus, we suppose here that the surrounding sub-systems are
perfectly tuned to feed the PEMFC stack as it is designed in the sizing tool. The work achieved in this

part led to a Python code implemented in Jupyter Notebook environment. We chose this option to add

markdown text between our lines of code to physically explain and make it clearer.

1.1. Input and output parameters

This code addresses the left part of the “V” conception cycle, then the input parameters are the
specifications we can find in a set of requirements from a customer, who builds a car or a plane for

example. The output parameters are the geometrical characteristics of the stack, the operating

characteristics of the designed stack and the theoretical fuel consumption. The parameters are detailed
in the table below:

Input parameters Output parameters

Name Type/Unit Name Type/Unit

Power mission profile

(function of time)

Time and Power

vectors [s], [W]

Number of cells in

series
Scalar [-]

Required stack voltage Scalar [V] Cell area Scalar [cm2]

Hydrogen inlet

pressure
Scalar [bar] Stack mass Scalar [kg]

Air inlet pressure Scalar [bar] Specifications at mean power

Stack temperature Scalar [°C]
Stack operating

voltage
Scalar [V]

Stack operating
current

Scalar [A]

Stack operating

current density
Scalar [A/cm2]

Load of the stack
Scalar [% of max

power]

Mean efficiency Scalar [%]

H2, O2 consumption
H2O production

Scalars [kg/h]

Notes:
- State-of-the-art PEMFC systems use the same hydrogen and air pressure to avoid internal

stresses

- We assume the entire stack to be at the same temperature, as we use 0D model and equations

Table 1: Input and output parameters

4

1.2. The different versions of the code

We have currently implemented 5 different versions. The current working version is 4.1.2 We will

provide an overview of the 5 finished versions.

1.2.1. Version 1

The first version aimed at implementing the basis equations for plotting the V-I diagram.

The implemented equations were the following ones:
- Nernst equation

- Activation losses (bugging)

- Ohmic losses
- Mass transport losses (bugging)

1.2.2. Version 2

The current program improves the following points compared to V1:

- Better explanation of the comments

- Actualization of the mass transport losses constants
- Calculation of the stack power and efficiency function of the current density

- Better V-I plot including power and efficiency curves

- Calculation of the design points: maximum power and best efficiency

1.2.3. Version 3

The current version aims at improving/implementing the following parts compared to V2:
- Implement some volume and mass estimations for a state-of-the-art PEMFC

- Finalize the V-I diagram and validate it

- Propose another performance definition based on a cost function including a weighted stack

mass
- Propose minimum volume and mass design points

1.2.4. Version 4

This 4th version aims at implementing a "mission profile" input:

- Add a mission profile input for power with a fixed voltage

- Add experimental data from manufacturers on the theoretical V-I curve
- Find an accurate value for mass density of a PEMFC stack

1.2.5. Version 4.1.1 (latest)

This latest version brings a few improvements:

- Implementation of a standard mission profile

- Split V-I diagrams to make them easier to read

In the next section, we will focus on version 4.1.1.

5

2. Code structure explanation

In this section, we will detail each section of the Python code. The full code is available in the
appendix section.

2.1. General structure

Fig.2: Flow chart of the sizing tool

We first designed a flowchart in order to set up the order of the code calculations. In fact, we

preliminarily needed to check if there were no interdependencies. Therefore, as can be seen above, we
placed in green the input parameters. It was needed to be able to calculate all the other values starting

from them. In red, we can observe the resulting values we can use for sizing a PEMFC stack or

controlling its quality.

The following parts of this chapter will attempt to clarify the content of this flow chart and the

equations and methods used to go from one box to another.

2.2. Power mission profile

For the design of energy conversion systems, conceptors usually use a power mission profile, which

is a representation over time of a typical mission for the designed system. This faithfully models the
needs of a system and optimizes the design of the energy converter according to different criteria. Here

is an extract of the mission profile presented in the EU harmonised test protocols for PEMFC MEA

testing in single cell configuration for automotive applications [2] used in PEMFC pollution tests.

6

2.3. Performance function

To determine the design point, the user can define a performance function that will be maximized
during the dimensioning process. This function can use the following variables:

- Efficiency of the stack

- Stack mass
- Stack power

The user can add coefficients to the variables, to obtain a performance function with this shape:

𝐹𝑝𝑒𝑟𝑓 = 𝜀 − 𝐾𝑚 ∙ 𝑚 − 𝐾𝑝 ∙ 𝑃

2.4. Equations and fixed parameters

We will now detail the equations used to model the behaviour of the PEMFC stack as well as the

parameters taken from state-of-the-art literature.

2.4.1. Open circuit voltage (Nernst equation)

This is the optimal (theoretical maximum) voltage reachable computed with the Nernst equation.

This voltage would be obtained without losses.

𝑈𝑂𝐶 = 𝐸𝑟𝑒𝑣 +
𝑅𝑇𝑠
2𝐹

∙ 𝑙𝑛[𝑝𝐻2 ∙ √𝑝𝑂2]

𝐸𝑟𝑒𝑣 = 𝐸𝑟𝑒𝑣
0 + (𝑇𝑠 − 𝑇𝑟𝑒𝑓) ∙

∆𝑆0

𝑛𝐹

Fig.3: Extract of the EU harmonized mission profile

7

With:

{

𝑅: universal gas constant (8.3144 𝐽 ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1)
∆𝑆0

𝑛𝐹
: standard state entropy change (−0.85 ∙ 10−3 𝑉 ∙ 𝐾−1: [2] page 5)

𝐹: Faraday constant (96485 𝐶 ∙ 𝑚𝑜𝑙−1)

𝐸𝑟𝑒𝑣: reversible voltage (𝑉)

𝑝𝐻2: hydrogen partial pressure (𝑎𝑡𝑚)

𝑝𝑂2: oxygen partial pressure (𝑎𝑡𝑚)

𝐸𝑟𝑒𝑣
0 : standard state reference potential (1.229 𝑉: [2] page 5)

𝑇𝑟𝑒𝑓 : standard state temperature (298.15 𝐾)

2.4.2. Activation losses

Some voltage difference from equilibrium, called overpotential, is needed to get the
electrochemical reaction going. In a hydrogen/oxygen fuel cell, the oxygen reduction requires much

higher overpotential. Thus, we will focus only on the cathode side. State-of-the-art cathodes are covered

by platinum, we then give appropriate values for this case of study.

𝑈𝑎𝑐𝑡,𝑐 =
𝑅𝑇𝑠

𝛼𝑐𝐹
∙ log(𝑖 + 𝑖0,𝑐)

𝑖0,𝑐 = 𝑖0,𝑐
𝑟𝑒𝑓

∙ 𝑎𝑐 ∙ 𝐿𝑐 ∙ (
𝑝𝑂2

𝑝𝑂2
𝑟𝑒𝑓)

𝛾

∙ exp [−
𝐸𝑐
𝑅𝑇𝑠

∙ (1 −
𝑇𝑠
𝑇𝑟𝑒𝑓

)]

With:

{

𝛼𝑐 ∶ transfer coefficient (0.65 [0.5 − 0.7]: [3] abstract)

𝑖0,𝑐 ∶ exchange current density on cathode side (𝐴 ∙ 𝑚
−2)

𝑖0,𝑐
𝑟𝑒𝑓 : reference exchange current density (1 ∙ 10−3𝐴 ∙ 𝑚−1: [4])

𝑎𝑐 ∶ catalyst specific area (800 [600 − 1000] 𝑐𝑚2 ∙ 𝑚𝑔−1: [6] page 18)

𝐿𝑐 ∶ catalyst loading (0.3 [0.3 − 0.5] 𝑚𝑔 ∙ 𝑐𝑚
−2: [6] page 18)

𝛾 ∶ pressure dependency coefficient (0.5: [6] page 18)

𝐸𝑐 ∶ activation energy for oxygen reduction (66 ∙ 10
3 𝐽 ∙ 𝑚𝑜𝑙−1: [5] page 18)

2.4.3. Mass transport losses

This loss is due to a diffusion process. 𝐻2 and 𝑂2 must diffuse through the electrodes to react. The
consumption of reactants on the catalyst surface results in the creation of a concentration gradient

through the diffusion layer (in our case the thickness of the electrode). This consumption can reach a

maximum value (when reactant concentration on the catalyst layer reaches 0) and corresponds to a limit

current that a fuel cell will never be able to overtake. Similarly to the activation losses, we can neglect

the mass transport losses on the anode (𝐻2) side because the limit current on the cathode side will be

much lower than on the anode side. This is because air is used (rather than pure oxygen) which makes

𝑂2 diffusion slower than 𝐻2 [7].

𝑈𝑚 =
𝑅𝑇𝑠
𝑛𝐹

∙ ln (
𝑖𝑙𝑖𝑚

𝑖𝑙𝑖𝑚 − 𝑖
)

𝑖𝑙𝑖𝑚 =
𝑛𝐹𝐷𝐶𝑂2

𝛿

8

With:

{

 𝑖𝑙𝑖𝑚 ∶ limit current density (𝐴 ∙ 𝑚−2)

𝐷 ∶ diffusion coefficient of cathode GDL (5 ∙ 10−3 𝑚2 ∙ 𝑠−1)

𝐶𝑂2 ∶ concentration of 𝑂2 on cathode side (𝑚𝑜𝑙.𝑚
−3)

𝛿 ∶ diffusion layer thickness (100 ∈ [100 − 400] 𝜇𝑚: [7])

[7]

Note: The value of the diffusion coefficient was adjusted to get a value of 𝑖𝑙𝑖𝑚 close to 2 A/cm2 as it is

a common value for state-of-the-art PEMFCs and we were not able to find a value for 𝐷 in literature.

This value can be modified by the user if needed for its own applications.

2.4.4. Ohmic losses

Ohmic losses occur because of resistance to the flow of ions in the electrolyte and resistance to the
flow of electrons through the electrically conductive fuel cell components. These losses can be simply

expressed by Ohm’s law:

𝑈𝛺 = 𝑖 ∙ 𝑅𝑖

𝑅𝑖 = 𝑅𝑖,𝑖 + 𝑅𝑖,𝑒 + 𝑅𝑖,𝑐

With:

{

 𝑅𝑖 : total cell internal resistance

(0.14 ∈ [0.1 − 0.2] ∙ 10−3 𝛺 ∙ 𝑚−2: [5] page 20)

𝑅𝑖,𝑖: ionic resistance (𝛺 ∙ 𝑚
−2)

𝑅𝑖,𝑒: electronic resistance (𝛺 ∙ 𝑚
−2)

𝑅𝑖,𝑐: contact resistance (𝛺 ∙ 𝑚
−2)

[5] page 20𝑅𝑖,𝑖: ionic resistance (𝛺 ∙

𝑚−2)𝑅𝑖,𝑒: electronic resistance (𝛺 ∙ 𝑚
−2)𝑅𝑖,𝑐: contact resistance (𝛺 ∙ 𝑚

−2)

Electronic resistance is almost negligible. Ionic resistance mostly depends on the state of hydration

of the polymer membrane. Contact resistance depends on the materials used for GDL and bipolar plates.

Typical values for 𝑅𝑖 in well-designed fuel cells are between 0.1 and 0.2 𝛺. 𝑐𝑚−2.

There are other models available to compute this resistance more precisely in [9], [10], using

models to evaluate the conductivity of the different components. We could also capture more precisely
the impact of the membrane hydration on the ionic resistance if needed. For a pre-dimensioning study,

the range above is sufficient.

2.5. V-I diagram

2.5.1. Expression

The V-I diagram is the most important data for a conceptor to design a PEMFC stack. It gives the
curve relating the voltage of the stack with the current density in it. Similarly to a chemical battery, the

voltage drops when the current density increases due to the losses detailed above.

The mathematical expression of the V-I curve is:

𝑈𝑐𝑒𝑙𝑙 = 𝑈𝑂𝐶 − 𝑈𝑎𝑐𝑡(𝑖) − 𝑈𝑚(𝑖) − 𝑈𝛺(𝑖)

The shape of the curve obtained is shown on the figure below:

9

On this figure, we can notice 3 main zones:

- For low current densities (red enclosed area), we observe the effects of activation losses

- The linear middle area is due to ohmic losses
- For high current densities (green enclosed area), we observe a sharp drop due to diffusion

limitations

A PEMFC stack operates necessarily on a point of this curve. The conceptor then aims to choose

the best point to design its system.

2.5.2. Definition of the design points

In the code, we propose several design points. For their computation, we use the efficiency of the

fuel cell, which is designed as follows:

𝜀 =
𝑈𝑐𝑒𝑙𝑙
𝑈𝑂𝐶

A first design point is obtained by maximizing the performance function defined in section 2.3.

We can also size the stack at the point giving the best ratio efficiency/mass, which is an alternative

way to the performance function of comparing the efficiency and the mass.

The last implemented design point is the max power design point (which is also the lowest mass).
This would result in a 100% load of the stack.

The distribution of the design points is shown on the figure below:

Fig.4: Shape of a V-I diagram

10

2.6. Mass estimation

In order to compute the design points, we need an estimation of the mass of the stack for each point
on the V-I curve. We then studied the structure of a fuel cell, which is shown on the figures below:

 Fig.6.A-B: PEMFC structure and layers [11]

We also summarized the thicknesses,

materials and densities of each layer,
shown in the table on the left. More

information can be found in [12], [13].

The dimensions used to compute the
mass are calculated using the methods

detailed in the next section (cell area,

number of cells).

Fig.5: V-I diagram with design points

Table 2: PEMFC materials and thicknesses

11

2.7. Computation of the results

2.7.1. Verification of the mission profile compatibility

The mission profile entered by the manufacturer represents an evolution of the power requested by
the surrounding systems to the stack. Each power has to be reached, and this is why we must choose the

sizing power for optimized operation of the PEMFC. For this, we start by considering the mean power

regarding the complete profile. Then, we check whether we actually reach the maximum required power
or not. If yes, then the stack operating at its chosen design point is already fulfilling the requirements,

so the output values can be calculated. Unfortunately, most of the time the maximum power reachable

is lower than the required one. In this case, we process iteratively:

Fig.7: Structure of the code to optimize the sizing power

Using this process, the sizing power can be calculated as well as the output values. A real example

will be detailed in section 3.

2.7.2. Outputs calculation

To conclude this part of the process explanation to size a PEM fuel cell, we need to calculate the

output variables. These results are useful to a fuel cell manufacturer to optimize and fit its conception

to the usage of their system.

The results are calculated as follows:

- Number of cells in series:

𝑁𝑐𝑒𝑙𝑙 = ceil (
𝑈𝑠
𝑈
)

Where: {
𝑈𝑠 : stack required voltage
𝑈 : cell voltage (from design point)

12

- Cell area:

𝐴 =
𝐼𝑠
𝑖

Where: {
𝐼𝑠 ∶ stack required current
𝑖 : cell current (from design point)

- Total stack mass:
We now have our missing parameters to compute the stack mass. Note that the anode and cathode

plates, also named “end plates”, are not present in every cell. These two plates that compose the structure

of the entire stack are only present in the beginning and at the very end of the stack. They include all the

cells in series located in between them.

From the composition of a single cell and knowing the number of them (determined during sizing

process), we can retrieve the complete composition of the stack. Finally, as we already calculated the
cell area, we know the total volume of each material composing the PEM fuel cell. The global mass can

then be estimated based on the volume and the density of all the materials.

𝑚𝑠𝑡𝑎𝑐𝑘 = ∑ 𝑉material ⋅ 𝜇material ⋅ 𝑛material
material

Where:

{

𝑚𝑠𝑡𝑎𝑐𝑘∶ stack mass
𝑉material = 𝐴 ⋅ 𝑡1 cell : material volume in one cell
𝜇material : material density
𝑛material : number of occurrences of the material in the stack
𝑡1 cell : thickness of the material plate in one cell

- Stack consumption and emission

𝑁̇𝑐𝑜𝑛𝑠
𝐻2 = 𝑁𝑐𝑒𝑙𝑙 ⋅

𝐼𝑠̅
𝑛 ⋅ 𝐹

⋅ 𝑀𝐻2

𝑁̇𝑐𝑜𝑛𝑠
𝑂2 = 𝑁𝑐𝑒𝑙𝑙 ⋅

𝐼𝑠̅

2𝑛 ⋅ 𝐹
⋅ 𝑀𝑂2

𝑁̇𝑒𝑚𝑖𝑠𝑠
𝐻2𝑂 = 𝑁𝑐𝑒𝑙𝑙 ⋅

𝐼𝑠̅
𝑛 ⋅ 𝐹

⋅ 𝑀𝐻2𝑂

Where:

{

 𝑁̇𝑐𝑜𝑛𝑠

𝐻2 : quantity of 𝐻2 consumed

𝑁̇𝑐𝑜𝑛𝑠
𝑂2 : quantity of 𝑂2 consumed

𝑁̇𝑒𝑚𝑖𝑠𝑠
𝐻2𝑂 : quantity of 𝐻2𝑂 emitted

𝐼𝑠̅ ∶ stack current as mean operating point
𝑁𝑐𝑒𝑙𝑙 : number of cells
𝑛 : number of electrons exchanged in the redox reaction
𝐹 = 96485 [C/mol] : Faraday's constant
𝑀𝑒 : molar mass of the specie 𝑒

- Stack load at operating point
At operating point, we can define the stack load as the ratio between the mean power of the mission

profile and the maximum reachable power.

𝐿𝑠 =
𝑃mission̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑃𝑚𝑎𝑥𝑖

These are all the deciding parameters and information for the conception of a PEMFC stack that a

manufacturer can manipulate depending on the usage and the chosen function of performance. This
function has a great impact on how the stack is sized, and it is a useful tool when conceiving a fuel cell

for very specific applications.

13

3. Study of a standard case

This section will focus on how we experienced with and tested developed sizing tool. This step is

necessary to verify that the computed results are reasonable and fit with potential experimental data.

3.1. Standard pollution test

3.1.1. Fuel cell input parameters

PEMFC tends to become common in the transportation industry due to its high level efficiency,
low operating temperature and high energy density. Therefore, the European Commission has tried to

elaborate a harmonized test to qualify a vehicle-implemented PEM fuel cell. These operating conditions

and initial parameters are found in [1].

As our sizing tool is now able to represent any configuration, we chose to test it with the standard

pollution test presented by the European Commission. Here are the input parameters implemented to

run the procedure:

The power mission profile is the one presented in Fig.2.

Stack voltage: 𝑈𝑠 = 800 [V] (not mentioned in [1], but this value has been chosen for a common
car example).

Air inlet pressure: 2.3 [bar]
Hydrogen inlet pressure: 2.3 [bar]

In our test, we will define the following performance function:

𝐹𝑝𝑒𝑟𝑓 = 𝜀 − 𝐾𝑚 ∙ 𝑚

Where: {
𝜀 ∶ efficiency
𝐾𝑚 ∶ mass impact coefficient
𝑚 ∶ stack mass

We set the mass coefficient to 𝐾𝑚 = 10 ⋅ 10−3. This value gives the mass a relatively average

importance, typically for a road vehicle. In an aerospace application, we could increase the mass

coefficient to have a better performance when the system weight is low. However, in a bus or boat

application, the mass does not have a great of impact, so the 𝐾𝑚 value can be decreased.

The following Fig.8 shows the look of the performance function in our car pollution test.

Fig.8: Performance function in the case of a car pollution test stack optimization

14

This function is supposed to give a performance overview of the PEMFC. It is used to choose a

design point on the V-I curve.

3.1.2. PEM fuel cell sizing results

By running the optimization program, we have sized the fuel cell stack to the input requirements.

In fact, by requesting the specific mission defined by all the parameters, we finally obtained the stack

characteristics as a result. It can be seen on the following picture the initial power mission profile, from
which the initial mean power was used at the first iteration to size the stack. In green, we can see the

final sizing power to which the program converged. This sizing power allows the PEMFC to reach every

power value of its mission, while remaining the most efficient at the operating point.

Fig.9: Power mission profile showing the sizing power after sizing process

The program is tuned to size the stack so that the maximum power to reach is 5% above the

maximum power required by the power profile. Therefore, we can observe the following characteristics

for the stack performance:

 Sizing power: 7486.7 [W]
 Required maximum power: 19662.9 [W]
Stack maximum power available: 20700.0 [W]

Global specifications of the stack size to be optimized for the initial parameters:

Number of cells in series: 1080 [-]
 Cell area: 21.5 [cm²]
 Stack mass: 11.1 [kg]

Characteristics when operating at mean power:

 Stack operating voltage: 824.0 [V]
 Stack operating current: 8.0 [A]

 Stack operating current density: 0.36 [A/cm²]
 Load of the stack: 31.23 [% of maximum power]
 Mean efficiency: 64.33 [%]

Stack fluid consumption and generation:

 H2 consumed: 0.316 [kg/h]
 O2 consumed: 2.530 [kg/h]
 H2O generated: 2.847 [kg/h]

15

In the current configuration, the stack only consumes 0.313 [kg] of dihydrogen per operating hour.
From this value, the autonomy of the vehicle can be calculated knowing the total hydrogen mass on

board. For example, here, we can retrieve the range of the car designed to fit these test conditions:

The standard pollution test power mission profile is designed for a typical city car. Such a car holds

around 6 [kg] of hydrogen and runs at a mean speed of 17.4 [km/h] in the standard pollution test

specifications. Knowing the hydrogen consumption of 0.316 [kg/h], we can deduce the range of this

typical car with optimized parameters calculated by the sizing script:

d =
6

0.316
⋅ 17.4 = 330 [km]

This value can be compared to a typical electric car range, which would be around 200 to 400 [km]

for city runs. The value calculated fits the general interval, which confirms the reasonability of the script.

3.2. Comparison with experimental data

Lastly, in order to check the correctness of our sizing tool, we can compare the V-I curve produced
by our mathematical model to some experimental data. As we did not have any PEM fuel cell to do

experiments, we found experimental data from the literature.

Fig.10 shows the V-I diagram extracted from the sizing results compared to three lots of

experimental data from different sources with different initial parameters.

Fig.10: Comparison between theoretical V-I curve and experimental data

As we can see, the V-I curve we calculated correlates the best with the experimental data having
the same initial parameters as our configuration. This green triangle data is extracted from [14] where

the initial configuration was the following:

Ts = 80 °C
 Membrane material: Nafion 117

 enafion = 100 μm

16

The V-I curve sticks quite well to brown crosses data [15]. In fact, this data is extracted for

experiments where the only modification regarding the data presented above is the operating
temperature. We can observe that this small change has a negligeable impact in this order of magnitude.

Finally, we also plotted experimental data (blue squares) from a test [15] where the membrane was

175 μm thick, and it is obvious that this change has a great impact on the look of the V-I curve.

17

4. Review of the sizing script method and results

In this section, we explain the construction of the script we developed to size and optimize a proton

exchange membrane fuel cell stack. This process of design can be requested by manufacturers to
conceive PEMFC stacks and tailor them to their very specific application.

To optimize the characteristics of the stack, a few things are needed. The power mission profile or

the mean, and maximum power as well as the stack working voltage are requested to fit the fuel cell to
the operating conditions. After setting up a performance function that will determine the working point

function of your specific application, it is only needed to set up the fluids inlet pressures, that depend on

the surrounding compressor systems, and the stack temperature. The latter will be determined function
of the stack environment, working conditions and neighbouring systems.

With these few input data, the optimizing process gives you the dimensions of the PEMFC stack
and its mass. It also provides you the hydrogen and oxygen consumption rate per hour as well as the

emission of water in kilograms per operating hour. The efficiency and the nominal stack load are also

estimated.

18

Modelling tool

5. Introduction to the modelling tool

In the first part of this report, we discussed how we developed a sizing tool for the PEMFC only

and we considered that the sub-systems around the PEMFC were perfectly tuned to allow optimal

functioning of the PEMFC. In this section we will review the different subsystems that work around the
PEMFC and how we started the modelling process using Dymola.

5.1. PEMFC subsystems

For the PEMFC to be functioning properly a series of components are necessary to condition and

regulate the different parameters.

In the figure below we can see a typical PEMFC architecture used for transport applications.

Here we can see three different circuits. In green the air circuit which consists of an air filter, a

compressor, a humidifier, and a valve. These components are used to condition the ambient air to the

appropriate pressure, temperature, and humidity before it enters the PEMFC. In red we can see the
hydrogen circuit, which consists of a hydrogen source (the tank), a pressure valve and a heat exchanger.

These components also condition the hydrogen by controlling the flow, phase, temperature, and pressure

of the hydrogen before it enters the PEMFC. Finally in blue we have the temperature regulating circuit,

which consists of deionized water, a radiator and fan and a heat exchanger. These components regulate
the temperature of the PEMFC so that it can work in an optimized environment as well as heating up

the hydrogen before it enters the PEMFC.

As you can see, for a PEMFC to work properly a lot of components need to work in harmony with

one another to provide the perfect condition for peak performance.

Fig.X:
Fig.11: System layout - automobile

19

5.2. Dymola

Modelling this type of architecture for simulation and test purposes is tedious and while it could be

done using different types of softwares like Simulink, Matlab, and others, we have chosen to use a

software called Dymola as it will give us more freedom in how we can configure the system down the

road.

Dymola is a simulation software initially designed by Hilding Elmqvist in 1978 and stands for

Dynamic Modelling Language. This software, now owned by Dassault System, is a simulation software
tool used particularly for modelling and simulating complex dynamic systems. This software is based

on the Modelica language which allows users to create complex dynamic models in the form of blocks

and components. The Modelica language provides a set of libraries of pre-built components that can be
used to create numerous models and simulations from simple mechanical systems to complex multi-

domain applications. These components or blocks typically represent physical phenomena such as fluid

flow, heat transfer, electrical circuit, and mechanical systems.

Once these blocks or components are coded and modelled, they can be assembled into different

configurations based on the needs and wants of the user. Once the inputs and parameters are entered,

Dymola then generates the equations that describe the behaviour of the system over time, which can
then be analysed as tables and graphs.

Some of the benefits of Dymola and Open Modelica are that its innerworkings involve a
combination of object-oriented modelling, numerical analysis, and Differential-Algebraic System

Solver (DASSL) algorithms to solve these complex multi-domain applications. Another advantage of

Dymola is that the components and model are coded using non directional equations. Meaning that the

software itself will exploit and rearrange the given equations to fit the input parameters given, giving
the users an infinity of possibilities to use different blocks and components in whichever way they need.

20

6. Phase one – Exploring and understanding the innerworkings of Dymola

through the analysis of a pump system

Our first phase of the modelling process was to get acquainted with the software by using the

available library to create models and run simulations. As later on we would be modelling components
like compressors and valves which deal with fluids we decided to focus on fluidic components. We first

started by looking at a pump system example.

In the figure below you can see a pump system example taken directly from the Dymola library.
This model consists of two different parts. The physical components in red and the control components

in green.

6.1. The physical components

The physical components are as follows:

• Fluid sources

• Pump

• Pipe

• Reservoir

• Valve

• Sink

These components and blocks are the core of the model, as they contain equations that translate the

physical properties of the fluid into equations. Each component has their own sets of equations that

enable the software to understand how the fluid moves through the system and how its parameters such
as its temperature, pressure, enthalpy, and phase change by going through the different blocks. One of

the advantages of Dymola is that after a simulation a user is able to retrieve these sets of data as a

function of time at each entering and exiting point of each of the different components.

Fig.12: Dymola library example of a pump system

21

Fig.13: Data plots of a 2000 sec simulation of Dymola's pumping system

As we can see in these two plots after the simulation over a period of 2,000 seconds, when the
simulation starts the water level in the reservoir is at 2.2 m high and the pump is off. However, when

the simulation starts, and the reservoir level falls to below 1.83 m the pump turns on to refill the tank to

about 2.22m high and then shuts off again. This analysis brought us to the next question of how we

control the different components to make everything work together in harmony.

6.2. The control components

This is where we started to look at the second part of the model, the control part. The control part

is made up of 6 components.

• Constant (Relative Pressure Set point)

• On/Off Controller

• Triggered trapezoid (Pump RPM Generator)

• First order block (PT1)

• Source Step (Valve Opening)

• Relative pressure sensor (Reservoir Pressure)

Like we mentioned, our first assumption about the control system was that the pump turned on once
the reservoir level reached 1.83 m. However, when looking closely at the model we realised that the

reservoir pressure sensor was the one giving the information to the control system to turn the pump on

and off. To reinforce our thoughts, we plotted the reservoir pressure and the reservoir height and
validated our thought process as the graphs are visually identical in relation to time.

Fig.X: Fig.14: Data plots of a 2000 sec simulation of Dymola's pumping system

22

6.3. Creating our own test model

After getting acquainted with the pump system presented above, we then decided to try to create

our own system to finalise our understanding of the general innerworkings of Dymola. For that we

created the system below and did not bother to integrate a variable control system as it would not be

necessary for the rest of our project.

Fig.15: Simple fluid test system

Here the goal of our system was to familiarize ourselves with the components and the different

parameters so there is no concrete physical purpose for our model.

Here our model is composed of:

• Source

• 2 pipes

• 2 valves

• Tank

• 2 Step control

• Sink

In our model we used to step control to delay the opening of the two valves. The first one opens at
200 secs and fills the tank till the second valve opens at t = 400sec and allows the tank to empty into the

sink. Here we are not using a pump, but we are generating current through a pressure difference between

the reservoir and the water source. However, as we know, when the water level rises the pressure at the

bottom of the reservoir increases, therefore the difference in pressure between the reservoir and the
source decreases, which causes the flow to

decrease until the pressure difference is equal to

zero. In our model we did not wait until the
pressure equalized and therefore at t= 400 sec

the second valve opens and drains the fluid into

the sink. Once the valve is open the pressure
difference is so great that the reservoir will

empty fast. This rate will however decrease until

the flow rate coming into the tank and the flow

rate exiting the tank balance out and the
reservoir level becomes constant. This was our

goal, and this is what we observed when we

plotted the reservoir level in function of time as
show in the figure to the side.

Fig.16: Plot of the tank level

23

7. Phase two – Creating a model of a linear valve

Our second phase was modelling our first components. Even though valves do exist in the original

Dymola library, we chose to first model a linear van to ensure that we had a model to compare ours with
in case we needed to debug or detect an error.

7.1. Understanding the structure of the Modelica coding Language

We first started by trying to understand the Modelica language and its structure. Through our work

we discovered that the Modelica language is not very complex as it uses very simple syntax. What makes

Dymola complicated is its use of different libraries throughout its code.

7.2. Dymola libraries and its building blocks

Dymola and the Modelica like previously mentioned is a modelling and simulation software tool

that uses a component-oriented approach to model physical systems. These components can be created

by coding, using the Modelica language, or by combining existing building blocks and bricks.

Libraries in Dymola are collections of pre-built components, and they contain a set of related

models that are organized in packages. A component is made of multiple building blocks and bricks.
These blocks and bricks are specific codes used to define different variables, parameters, and equations.

What is tricky is that each block and brick contain other more fundamental bricks in a never-ending

chain just like a Russian doll. This is advantageous as it removes the need to create a component from

scratch and having to completely redefine and code a whole component. However, this can also be a
very big disadvantage. During our project, this was the case. As our goal was to use as few of the

components as possible to help us understand the inner working of Dymola, we had to search through

the different levels of the bricks and blocks to understand what each of the blocks did and how we could
code our components to our specific needs.

7.3. Modelica structure

The Modelica language is structured into 2 parts: parameters and the equations. However, for the

sake of understanding exactly how everything worked together we further divided these three parts.

7.3.1. Introduction

Introduction is the part of the code where we first needed to import some essential libraries such as
the constant library. As we were trying to limit the number of libraries and blocks in our code this is the

only thing we used, but other more complex components will generally import or “extend” a block. By

extending a block in a code the component will inherit all the brick’s properties and equations.

Fig.17: First lines of code our linear valve test

Fig.18: First lines of code of Dymola's linear valve

24

7.3.2. Parameters, Variables, Inputs

In the Modelica language parameters are used to define a variable that the user will be able to

modify when a specific component is used. These parameters can be furthermore clarified by adding a

specification such as the unit. This is useful as this unit will be seen in the parameter window when a

user uses it and it will also be seen on the plots during a simulation. As you can see in the figure below,
in the case of our linear valve, we chose to define two parameters that will modify the valve. The first

is the valve flow coefficient and the second is the section area of the valve.

Fig.19: The parameters of our linear valve test

In this section the user will also be able to define variables. These variables will be a series of non-
fixed values that will be used in the equations later on but must be first defined here. In our case as

shown in the figure below, we defined “dp” as the pressure drop across the valve in pascals and

“m_flow” which is the flow rate through the valve in m3/s.

Fig.20: The variables of our linear valve test

Finally we must also define the inputs and interfaces of our components so that the software knows

the connections to expect when integrated into a model. In our case, since we are modelling a linear

valve with one entrance and one exit, we used the modelica brick

“Modelica.Fluid.Interfaces.FluidPort_a/b” to indicate our input and outputs. Since we also

want to control the opening and closing of said valve, we needed to specify that an input

“valve_opening” is necessary.

Fig.21: The inputs of our linear valve test

Once defined these inputs and outputs can be seen on the graphic display of the components as two
circles for the two ports and one arrow for the valve opening input.

Fig.22: Graphic representation of our linear valve model

25

7.3.3. Equations

The equation part of the code is the most important and the core of the code. This is where the user

can translate physical phenomenon as equations. With these equations the software can solve the system

and find all the unknowns that will represent in function of time the model. Here again we can subdivide

this part into two parts: governing equations and fundamental equations.

The governing equations are the equation that will enable our component to manipulate the variable

as a physical component would.

Fig.23: The equations of our linear valve test

The fundamental equations are equations we had to implement as we did not use any of Dymola’s
bricks. In reality, these equations are automatically implemented when using the blocks but, in our case,

we had to do it ourselves. The fundamental equations are equations that ensure that all rules of physics

are respected such as mass balance, phase, the percentages of the different particles in a fluid.

Fig.24: The fundamental equations of our linear valve test

26

8. Phase three – Incorporating a compressor model

After we became acquainted with the software and the modelling language our next task was to

incorporate Mr. Hazyuk’s own compressor in a model.

Fig.25: Compressor implementation into a system

The goal of this model was to compress a fluid and control its flow using a valve. However, after

long hours of debugging and trying to figure out where the errors were, we were not able to run a

successful simulation. This is due to the fact that in our model we have 64 scalar unknowns and only 63

equations. This is obviously unsolvable, and we tried to go through the different bricks of the
components but to no avail. However, this experience helped us further understand how the software

works and how to accurately tailor the libraries to our needs.

Fig.26: Error messages after simulation

27

9. Review of the Modelling Tool

Through this project and working with Dymola, we faced many challenges, but through it we

gained a lot of useful knowledge. Understanding the innerworkings of Dymola had its learning curve
but by digging into the Modelica language we now better understand its functionalities and capabilities.

By studying Dymola’s libraries and its models we learned how to efficiently organize and manage the

components required for our future models. We also gained first-hand experience in creating and coding

our own components, learning how to manipulate the different bricks and blocks that Dymola proposes
to easily obtain a functioning model. This experience provided us with a deeper understanding of the

component’s behaviour, characteristics and interaction within the broader context of a simulation. We

also learned how to translate physical laws into systems of equations to define the properties and
dynamics of the components.

While we are very satisfied with the learning experience, we however remain slightly frustrated as
we were not able to create a functioning model with Mr. Hazyuk’s own library. We do believe that with

more time we would have been able to finalize this model and move on to the creation of more

components, but this is part of the process, and we hope to accomplish the rest of this project next

semester.

28

Conclusion – Discussion

This research project was divided into two parts. In the first phase, during the first semester, we

researched the ins and outs of a PEMFC. We identified the different architectures and analysed their
different components to comprehend how each piece of this big puzzle interacted with each other to

turn hydrogen and air into electricity. Through this phase we also had to dive into the world of physics

to learn how technologies were implemented to create the perfect working environment to optimise

this process. With all this knowledge we wrote our state of the art.

In our second phase, our goal was also divided into two parts. First to create a sizing tool that would

be able to dimension a PEMF cell according to different parameters such as power consumption and the
external environment. Through this process we created a python code enabling us to manipulate different

governing equations and inputs to give us an optimised efficiency of the stack and the corresponding

stack characteristics.

Finally, this project is not yet finished. This report comes too early compared to the final

adjustments we could have made to the models. The Modelica component library is not yet elaborated,

and some important evolutions of the sizing optimization remain outstanding.

Concerning the script, it currently works well and does fit with the requirements we stated at the

beginning of the project, but we could have improved the following elements:

- Better power optimization based on the mission profile: the current optimization is based on the

average value of the power mission profile. This does work, but since the efficiency of the stack
varies along the V-I curve, it varies when changing the stack power supply, during the mission.

Therefore, in a future version, it would be better to iteratively go through the mission profile to

derive a function of several variables (including efficiency, for example) to find its extremum.

Such an optimization would be more efficient for manufacturers.

- Derive the 𝐾𝑚 value from a vehicle model: using a vehicle simulation model and a real complete

mission profile, it would be feasible to derive the 𝐾𝑚 value used in the performance function
from a mean calculation of the variation of power function of the variation of total mass

(including hydrogen tank): 𝐾𝑚 =
𝜕𝑃

𝜕𝑚𝑡𝑜𝑡

̅̅ ̅̅ ̅̅ ̅
.

29

Appendix

1 # -*- coding: utf-8 -*-
2

3 """
4 ##### Sizing program for PEMFC #####
5

6 This code is a tool to size a PEMFC stack. This is based on governing equations derived analyticaly from physical laws.
Those equations use parameters with physical meaning. The hypothesises and references used can be found in the attached
litterature.

7

8 @authors: Mathis DE MONTAZET and Felix BONNES, INSA Toulouse, 2023
9

10 """
11

12

13

14 ### Instructions
15

16 # The desired PEMFC properties must be filled in the "Input parameters" section.
17

18 # The state of the art parameters used for calculation as well as their acceptable range can be consulted in "State-of-
the-art parameters" section.

19

20 # The sources used are detailed in the "Sources" section of the report.

21

22

23

24 ### Versions
25

26 # __Version 1 (old):__

27

28 # The first version aimed at implement the basis equations for plotting the V-I diagram.
29 # The implemented equations were the following ones:

30 # - Nernst equation
31 # - Activation losses (bugging)
32 # - Ohmic losses
33 # - Mass transport losses (bugging)

34

35 # __Version 2 (old):__
36

37 # The current program improves the following points compared to V1:
38 # - Better explanation of the comments
39 # - Actualisation of the mass transport losses contants

40 # - Calculation of the stack power and efficiency function of the current density
41 # - Better V-I plot including power and efficiency curves
42 # - Calculation of thedesign points: maximum power and best efficiency

43

44 # The following points show mistakes or are not fully understood:
45 # - Understanding of $i_{0,c}$

46 # - Activation offset seams wrong
47 # - U_{act} definition is not sure
48 # - GDL diffusion coefficient cannot be found in the litterature

49

50 # __Version 3 (old):__
51

52 # The current version aims at improving/implementing the following parts compared to V2:
53 # - Implement some volume and mass estimations for a state of the art PEMFC
54 # - Finalize the V-I diagram and validate it

55 # - Propose another efficiency definition based on a cost function including a weighted stack mass
56 # - Propose minimum volume and mass design points
57

58 # __Version 4 (current and final):__
59

60 # This final version aims at implemeting a "mission profile" input:

61 # - Add a mission profile input for power with a fixed voltage
62 # - Add experimental data from manufacturers on the theorical V-I curve
63 # - Find an accurate value for mass density of a PEMFC stack

64

65 """
66 BEGINNING OF THE PROGRAM

67 """
68

69 ### Import of librairies

70

71 import matplotlib.pyplot as plt
72 import numpy as np

73 from scipy.interpolate import interp1d
74

75

76 ### Input parameters
77

78 # `[t, P]` = Power mission profile\

79 # `Us` = U_s is the required stack voltage, in [V] \
80 # `P_H2` = P_{H_2} is the hydrogen inlet pressure, in [bar] \
81 # `P_air` = P_{air} is the air inlet pressure, in [bar] \

82 # `Ts` = T_s is the operating temperature of the stack, in [°C]. The usual temperature is about 80°C. *Play with it!*

83

84

85 ## Power mission profile definition
86

87 # Possibility to import data from database

88 t = [0, 10.32, 15.48, 22.70, 29.93, 49.54, 61.92, 84.62, 97.0, 117.65, 144.48, 154.80, 164.09, 176.47, 185.55, 200] #
[s] Time

89 F_av = 140e3/356 #[N] Typical car forward force

90 speed = [0, 0, 15, 15, 0, 0, 31.5, 31.5, 0, 0, 50, 50, 35, 35, 0, 0] #[m/s] Car speed
91 P = [speed[e] * F_av for e in range(len(t))] #[W]
92

93 # First iteration mean power calculation
94 Ps = np.mean(P) #[W] Mean power based on dataset input power (not interpolated power!)
95 Ps_init = Ps

96

97 fig, ax = plt.subplots(1)
98 plt.plot(t, P, 'r', zorder=90)

99 plt.scatter(t, P, c='b', marker='+', s=80, zorder=99)
100 plt.plot([min(t), max(t)], [Ps, Ps], 'm-.', lw=0.7, zorder=1, label=f"Mean power: {int(Ps)} [W]")
101 plt.grid()

102 plt.title("Power mission profile")
103 plt.xlabel("Time [s]")
104 plt.ylabel("Power [W]")

105 plt.legend(loc="upper left")
106 plt.show()
107

108 ## Other parameters
109

110 Us = 800 #[V] Stack required voltage

111

112 # State-of-the-art PEMFCs use the same pressure for H2 and air to avoid internal stresses in the stack
113 P_H2 = 2.3 #[bar] Hydrogen inlet pressure

114 P_air = 2.3 #[bar] Air inlet pressure
115 Ts = 80 #[°C] Stack temperature
116

117 # If you want to export the results to a TXT file, change the following variable to `True`

118 print_results_to_txt = False
119

120

121 ### Design point
122

123 # To determine the design point, the user can define a performance function that will be maximized during the
dimensionning process. This function can use the following variables:

124

125 # - The `efficiency` of the stack

126 # - The stack `mass`
127 # - The stack `power`
128

129 ## Performance function
130 def F_perf(eff, **Par):
131 return eff - Par['K_m'] * Par['m'] # - Par['K_p'] * Par['P']

132 # return eff / (Par['m']+Par['N_cell'])
133

134 K_m = 10 * 1e-3 # Mass influence parameter

135

136

137 ### Calculations from input parameters

138

139 # T_s[K] = T_s[°C] + 273.15
140 Ts = Ts+273 #[K] Temperature of the stack in Kelvin

141

142

143 ### Constants definition

144

145 R = 8.314 #[J/mol/K] Perfect gaz constant
146 F = 96485 #[C/mol] Faraday's constant

147 Tref = 293.15 #[K] Reference temperature
148 Pref = 1 #[bar] Reference pressure
149 x_O2 = 0.21 #[-] Molar fraction of O2 in air

150 n = 2 #[-] Number of electrons exchanged in redox reaction
151

152

153 ### State of the art parameters
154

155 # __Open circuit voltage__

156 # This is the optimal (maximum) voltage reachable computed with the Nernst equation. It would be obtained without
losses.

157

158 Erev_0 = 1.229 #[V] Standard state reference potential
159 delta_S0_nF = -0.85e-3 #[V/K] Standard state enthropy change
160

161 # __Activation losses__ \
162 # Some voltage difference from equilibrium, called overpotential, is needed to get the electrochemical reaction going.

In a hydrogen/oxygen fuel cell, the oxygen reduction requires much higher overpotential. Thus, we will focus only on
the cathode side. State of the art cathodes are covered by platinum, we then give appropriate values for this case of
study.\

163

164 alpha_c = 0.65 #[-] Transfer coefficient for Oxygen reduction on Platinum [0.5 - 0.7]

165 i_0c_ref = 1e-3 #[A/m] Reference exchange current density for Oxygen reduction on Platinum
166 a_c = 800 #[cm²/mg] Catalyst specific area [600 - 1000]
167 L_c = 0.3 #[mg/cm²] Catalyst loading [0.3 - 0.5]

168 gamma_c = 0.5 #[-] Pressure dependency coefficient for cathode side
169 E_c = 66e3 #[J/mol] Activation energy for Oxygen reduction on Platinum
170

171 # __Mass transport losses__ \
172 # This loss is due to a diffusion process. H_2 and O_2 must diffuse through the electrodes to react.
173 D = 0.625e-6 #[m²/s] Diffusion coefficient of cathode GDL (carbon paper) [adjusted to have i_lim = 2 A/cm²]

174 delta = 100e-6 #[m] Diffusion layer thickness [100 - 400]
175

176 # __Ohmic losses__ \

177 # Ohmic losses occur because of resistance to the flow of ions int the electrolyte and resistance to the flow of
electrons through the electrically conductive fuel cell components.

178 R_i = 0.11e-4 #[Ohm.m²] Total cell internal resistance [0.1 - 0.2]e-4

179

180

181 ### V-I diagram

182

183 p_O2 = P_air*x_O2 #[bar] Partial pressure of O2
184

185 # Mass transport coefficients (cathode side only, as anode side losses are neglectable)
186 C_O2 = (p_O2*1e5)/(R*Ts)
187 i_lim = (n*F*D*C_O2)/delta

188

189 i = np.linspace(1, np.ceil(i_lim/1000)*1000, 1000) #[A/m²] Range of current density to study
190

191 ## Nernst Equation
192 Erev = Erev_0 + (Ts - Tref)*delta_S0_nF #[V] Reversible voltage
193 U_oc = Erev + (R*Ts/(n*F))*np.log(P_H2*(p_O2)**0.5) #[V] Open circuit voltage

194

195 ## Losses
196 # Activation losses (cathode side)
197 i_0c = i_0c_ref*a_c*L_c*(p_O2/(Pref*x_O2))**gamma_c*np.exp(-(E_c/(R*Ts))*(1-(Ts/Tref))) #[A/m²] Exchange current

density

198 print(f"i_0c = {round(i_0c*1e-4, 3)} A/cm²")
199 U_act = []

200 for j in i:
201 U_act.append((R*Ts/(alpha_c*F))*np.log(j+i_0c))
202

203 # Mass transport calculation (cathode side only, as anode side losses are neglectable)
204 print(f"i_lim = {round(i_lim*1e-4, 1)} A/cm²")
205 U_m = []

206 for j in i:
207 if i_lim/(i_lim-j) >= 0:
208 U_m.append((R*Ts/(n*F))*np.log(i_lim/(i_lim-j)))

209 else:
210 U_m.append(float('nan'))
211

212 # Ohmic losses
213 U_ohm = R_i * i
214

215

216 ### Calculation of the resulting voltage
217

218 # Cell voltage
219 U_cell = U_oc - U_act - U_m - U_ohm
220

221 ### Power density
222

223 Pd = [U_cell[e] * i[e] for e in range(len(i))] #[W/m²]

224

225

226 ### Mass estimation

227

228 def mass(A, N_cell, e_GDL):
229 component = ["End Plate", "Bipolar Plate", "Gasket", "GDL", "PEM", "GDL", "Gasket", "Bipolar Plate", "End Plate"] #

[m²]
230 thicknesses = [0.0050, 0.0020, 0.0002, e_GDL, 0.0001, e_GDL, 0.0002, 0.002, 0.005] #[m]
231 densities = [2800, 1750, 2300, 600, 1900, 600, 2300, 1750, 2800] #[kg/m^3]

232 occurences = [1, N_cell, N_cell, N_cell, N_cell, N_cell, N_cell, 1, 1] #[-]
233 m = 0
234 # length = 0

235 for idx in range(len(thicknesses)):
236 m += A * thicknesses[idx] * densities[idx] * occurences[idx]
237 # length += thicknesses[idx] * occurences[idx]

238 return m #, length
239

240 ### Efficiency

241

242 # __Definition of the efficiency:__
243

244 # We define the efficiency of a fuel cell as the voltage density provided divided by the chemical power consumed

245 # U_s: volatge delivered by the stack

246 # $U_{s, th}$: Theorical volatge deliverable by the chemical reaction

247

248 ### Design points
249 # __The performance function:__\

250 # The performance function is defined by user above
251

252 # __The best trade-off between efficiency and mass:__\

253 # An other available design point is the best ratio efficiency over mass. This design point can be selected by user
254

255 # __The best power / lower mass:__\

256 # The last design point available is the best power, which is also the lower mass design point
257

258 ## Efficiency calculation

259 Eff = [0 for idx in range(len(i))]
260 for idx in range(len(Eff)):
261 Eff[idx] = U_cell[idx] / U_oc #[-]

262

263 Is = Ps / Us #[A] Intensity of the current provided by the stack
264 N_cell = [Us / U_cell[e] for e in range(len(i))]

265 A = [Is / i[e] for e in range(len(i))]
266 m = [mass(A[e], N_cell[e], delta) for e in range(len(i))] #[kg]
267

268 Fun_perf = [0 for idx in range(len(i))]
269 Eff_mass = [0 for idx in range(len(i))]
270 Pd_times_eff = [0 for idx in range(len(i))]

271

272 for idx in range(len(i)):
273 Fun_perf[idx] = np.max([0, F_perf(Eff[idx], K_m=K_m, m=m[idx])])

274 Eff_mass[idx] = np.max([0, Eff[idx] / m[idx]])
275 Pd_times_eff[idx] = np.max([0, Pd[idx] * Eff[idx]])
276

277

278 ### Calculation of the design points
279

280 # Optimum values

281 max_Pd = 0
282 best_Perf = -1e20
283 best_Eff_m = 0

284 min_m = 1e20
285 for idx in range(len(i)):
286 if Pd[idx] > max_Pd:

287 max_Pd = Pd[idx]
288 idx_max_Pd = idx
289

290 if Fun_perf[idx] > best_Perf:
291 best_Perf = Fun_perf[idx]
292 idx_best_Perf = idx

293

294 if Eff_mass[idx] > best_Eff_m:
295 best_Eff_m = Eff_mass[idx]

296 idx_best_Eff_m = idx
297

298 if m[idx] < min_m:

299 min_m = m[idx]
300 idx_min_m = idx
301

302 ## Get experimental data
303 # To plot experimental data on our V-I diagram
304 import exp_data as exp

305

306

307 ### V-I plot

308

309 x_scale = 1e-4 # Change from [A/m²] to [A/cm²]
310

311 max_power_VI = (i[idx_max_Pd]*x_scale, U_cell[idx_max_Pd]) # V-I coordinates of maximum power
312 best_perf_VI = (i[idx_best_Perf]*x_scale, U_cell[idx_best_Perf]) # V-I coordinates of best performance
313 best_eff_m_VI = (i[idx_best_Eff_m]*x_scale, U_cell[idx_best_Eff_m]) # V-I coordinates of best efficiency/mass

314 min_mass_VI = (i[idx_min_m]*x_scale, U_cell[idx_min_m]) # V-I coordinates of minimum mass
315

316 # Bi-axis graph

317 VIfig, ax = plt.subplots()
318 ax.plot(i*x_scale, U_cell, color="blue", zorder=99, label="V-I curve")
319 ax.plot(i*x_scale, Eff, color="orange", zorder=99, label="Efficiency")

320 ax.plot(i*x_scale, Fun_perf, color="green", zorder=99, label="Perf. function")
321 # ax.plot(i*x_scale, Eff_mass, color="cyan", label=f"ϵ/mass") # Scale not adapted
322 ax.scatter(max_power_VI[0], max_power_VI[1], color="red", marker="*", s=100, zorder=100, label="$P_{{max}}$")

323 ax.text(max_power_VI[0]-max(i*x_scale)*0.01, max_power_VI[1]-max(U_cell)*0.001, "$P_{{max}}$", zorder=100, ha="right",
va="top")

324 ax.scatter(best_perf_VI[0], best_perf_VI[1], color="green", marker="*", s=100, zorder=100, label=f"$F_{{perf, max}}$")

325 ax.text(best_perf_VI[0]+max(i*x_scale)*0.005, best_perf_VI[1]+max(U_cell)*0.01, "$F_{{perf, max}}$", zorder=100,
ha="left", va="bottom")

326 ax.scatter(min_mass_VI[0], min_mass_VI[1], color="orange", marker="*", s=30, zorder=100, label=f"$m_{{min}}$")

327 ax.text(min_mass_VI[0]+max(i*x_scale)*0.002, min_mass_VI[1]+max(U_cell)*0.015, "$m_{{min}}$", zorder=101, ha="left",
va="bottom")

328 ax.scatter(best_eff_m_VI[0], best_eff_m_VI[1], color="cyan", marker="*", s=100, zorder=100, label=f"$\epsilon /
m_{{max}}$")

329 ax.text(best_eff_m_VI[0]-max(i*x_scale)*0.03, best_eff_m_VI[1]+max(U_cell)*0.015, "$\epsilon / m_{{max}}$", zorder=100,
ha="left", va="bottom")

330

331 # Formatting

332 ax.set_xlabel("Current density [A/cm²]", fontsize = 12)
333 ax.set_ylabel("Cell voltage [V]", color="blue", fontsize=12)
334 ax.set_ylim([0, np.ceil((max(U_cell)+0.1)*10)/10])

335 ax.grid()
336 ax.set_yticks(np.arange(0, max(U_cell)+0.1, 0.1))
337 ax2=ax.twinx()

338 ax2.plot(i*x_scale, Pd, color="red")
339 # ax2.plot(i*x_scale, Pd_times_eff, color="darkred", label="Power dens. * eff")
340 # ax2.plot(i*x_scale, m, color="cyan")

341 # ax2.plot(i*x_scale, N_cell, color="magenta")
342 ax2.set_ylabel("Power density [W/m²]",color="red",fontsize=12)
343 ax2.set_ylim([0, np.ceil(max(Pd)/1000)*1000])

344 lgd = ax.legend(loc="lower center", bbox_to_anchor=(1.38, -0.025))
345 plt.xticks(np.arange(0, i[np.where(np.isnan(U_cell))][0]*x_scale+0.2, 0.2))
346 plt.show()

347

348 # Experimental data
349 Datafig = plt.figure()

350 plt.plot(i*x_scale, U_cell, color="blue", zorder=99, label="V-I curve")
351

352 plt.scatter(exp.nafion117_e175[:, 0], exp.nafion117_e175[:, 1], zorder=77, alpha=0.5, marker="s", c="lightblue",
label="e = 175µm, T = 80°C")

353 plt.scatter(exp.nafion117_e100[:, 0], exp.nafion117_e100[:, 1], zorder=80, alpha=0.5, marker="+", c="darkred", label="e
= 100µm, T = 70°C")

354 plt.scatter(exp.nafion_70deg_e100[:, 0], exp.nafion_70deg_e100[:, 1], zorder=79, alpha=0.5, marker="^", c="green",
label="e = 100µm, T = 80°C")

355

356 # Formatting

357 plt.xlabel("Current density [A/cm²]", fontsize = 12)
358 plt.ylabel("Cell voltage [V]", color="blue", fontsize=12)
359 plt.ylim([0, np.ceil((max(U_cell)+0.1)*10)/10])

360 plt.grid()
361 plt.legend()
362 plt.yticks(np.arange(0, max(U_cell)+0.1, 0.1))

363 plt.xticks(np.arange(0, i[np.where(np.isnan(U_cell))][0]*x_scale+0.2, 0.2))
364 plt.show()
365

366

367 ### Choice of design point
368

369 dp = best_perf_VI # Best performance
370 # dp = best_eff_m_VI # Best efficiency/mass
371 # dp = min_mass_VI # Also P_max

372

373

374 ### Calculation of A and N_cell

375

376 def area(Is, i): # Is [A] / i [A/cm²]
377 return Is / (i/x_scale) # A [m²]

378

379 def cell_number(Us, U):
380 return np.ceil(Us/U)

381

382

383 ### Test for reaching the maximum power

384

385 A_dp = area(Is, dp[0])
386 N_cell_dp = cell_number(Us, dp[1])

387 m_dp = mass(A_dp, N_cell_dp, delta)
388 P_maxi = max_Pd*A_dp*N_cell_dp
389

390 power_margin = 5 #[%] Margin percentage over the maximum power to reach
391

392 print(f" Max power margin percentage: {power_margin:5} [%]")

393 print(f" Current sizing power: {int(Ps):5} [W]")
394 print(f" Stack maximum power available: {int(P_maxi):5} [W]")
395 print(f"Required maximum power (margin included): {int(np.max(P) * (1 + power_margin/100)):5} [W]\n")

396

397 if P_maxi > np.max(P) * (1 + power_margin/100):
398 ok = True

399 print("[+] The current design is compatible with the power mission profile.")
400 else:
401 ok = False

402 print("[-] The current design is too low to satisfy the maximum power required by the mission profile.")
403

404

405 ### Determination of the best design point compatible with the mission profile
406

407 iter = 0
408 while ok == False:

409 # Choice of a new Ps
410 eps_percent = 0.1 #[%]
411 eps_Ps = eps_percent/100 * (np.max(P) - np.min(P)) #[W] Step of additional power

412 Ps = Ps + eps_Ps #[W] Calculation of the new Ps value
413

414 # Update all the values that are function of Ps

415 Is = Ps / Us #[A] Current provided by the stack
416 A = [area(Is, i[e]*x_scale) for e in range(len(i))]
417 m = [mass(A[e], N_cell[e], delta) for e in range(len(i))] #[kg]

418 # print(m)
419

420 Fun_perf = [0 for idx in range(len(i))]

421 Eff_mass = [0 for idx in range(len(i))]
422

423 for idx in range(len(i)):

424 Fun_perf[idx] = F_perf(Eff[idx], K_m=K_m, m=m[idx])
425 Eff_mass[idx] = Eff[idx] / m[idx]
426

427 max_Pd = 0
428 best_Perf = -1e20
429 best_Eff_m = 0

430 min_m = 1e20
431 for idx in range(len(i)):
432 if Pd[idx] > max_Pd:

433 max_Pd = Pd[idx]
434 idx_max_Pd = idx
435

436 if Fun_perf[idx] > best_Perf:
437 best_Perf = Fun_perf[idx]
438 idx_best_Perf = idx

439

440 if Eff_mass[idx] > best_Eff_m:
441 best_Eff_m = Eff_mass[idx]
442 idx_best_Eff_m = idx

443

444 if m[idx] < min_m:
445 min_m = m[idx]

446 idx_min_m = idx
447 max_power_VI = (i[idx_max_Pd]*x_scale, U_cell[idx_max_Pd]) # V-I coordinates of maximum power
448

449 # Calculate the stack maximum power available
450 i_max_power = max_power_VI[0]
451 U_cell_max_power = max_power_VI[1]

452

453 A_dp = area(Is, dp[0])
454 N_cell_dp = cell_number(Us, dp[1])

455 P_maxi = max_Pd*A_dp*N_cell_dp
456

457 iter += 1

458

459 if P_maxi > np.max(P) * (1 + power_margin/100):
460 ok = True # Value of Ps is OK

461 else:
462 ok = False # Value of Ps is still too low, new iteration...
463

464 print(f" Number of iterations: {int(iter):8}")
465 print(f" Sizing power increase: {round((1-Ps_init/Ps)*100, 1):8} [%]")
466 print(f" Sizing power: {round(Ps, 1):8} [W]")

467 print(f"Stack maximum power available: {round(P_maxi, 1):8} [W]")
468 if np.max(P) * (1 + power_margin/100) != np.max(P): print(f" Maximum power to reach: {round(np.max(P) * (1 +

power_margin/100), 1):8} [W]")

469 print(f" Required maximum power: {round(np.max(P), 1):8} [W]")
470

471 missionfig, ax = plt.subplots(1)

472 plt.plot(t, P, 'r', zorder=90)
473 plt.scatter(t, P, c='b', marker='+', s=80, zorder=99)
474 plt.plot([min(t), max(t)], [Ps_init, Ps_init], 'm-.', lw=0.8, zorder=1, label=f"Mean power: {int(Ps_init)} [W]")

475 plt.plot([min(t), max(t)], [Ps, Ps], 'g-.', lw=1.1, zorder=1, label=f"Actual sizing power: {int(Ps)} [W]")
476 plt.grid()
477 plt.title("Power mission profile")

478 plt.xlabel("Time [s]")
479 plt.ylabel("Power [W]")
480 plt.legend()

481 plt.show()
482

483

484 ### Required specifications for the stack
485

486 # Global specifications

487 N_cell = cell_number(Us, dp[1])
488 A = area(Is, dp[0])
489 m = mass(A, N_cell, delta)

490

491 # Specifications at mean power: we determine the working point on V-I diagram
492 power = Ps

493 gap = power - Ps_init + 1
494 idx = np.where(i == i[np.abs(i-dp[0]*1e4).argmin()])[0][0]
495 while abs(power - Ps_init) < gap:

496 idx = idx - 1
497 gap = abs(power - Ps_init)
498 power = i[idx]*A*U_cell[idx]*N_cell

499 i_mean = i[idx]
500 Is_mean = i_mean * A
501 Us_mean = Ps_init/Is_mean

502 eff_mean = ((Us_mean/N_cell)/U_oc)*100
503

504 print("Global specifications:")

505 print(f" Number of cells in series: {round(N_cell):6} [-]")
506 print(f" Cell area: {round(A*1e4, 1):6} [cm²]")
507 print(f" Stack mass: {round(m, 1):6} [kg]\n")

508 print("Specifications at mean power:")
509 print(f" Stack operating voltage: {round(Us_mean, 0):6} [V]")
510 print(f" Stack operating current: {round(Is_mean, 0):6} [A]")

511 print(f"Stack operating current density: {round(i_mean*1e-4, 2):6} [A/cm²]")
512 print(f" Load of the stack: {round((Ps_init/P_maxi)*100, 2):6} [% of max power]")
513 print(f" Mean efficiency: {round(eff_mean, 2):6} [%]")

514

515 ### H_2 and O_2 consumption, H_2_O generation
516

517 # Knowing the equation of the chemical reaction in the cell and the Faraday’s law, we can easily find H2 and O2
consumption.

518 mol_mass_H2 = 0.002 #[kg/mol] H2 molar mass

519 mol_mass_O2 = 0.032 #[kg/mol] O2 molar mass
520 mol_mass_H2O = 0.018 #[kg/mol] H2O molar mass
521

522 M_H2_cons = N_cell * (Is_mean / (n*F)) * mol_mass_H2 * 3600
523 M_O2_cons = N_cell * (Is_mean / (2*n*F)) * mol_mass_O2 * 3600
524 M_H2O_gen = N_cell * (Is_mean / (n*F)) * mol_mass_H2O * 3600
525

526 print(f" H_2 consumed: {round(M_H2_cons, 3):5} [kg/h]")
527 print(f" O_2 consumed: {round(M_O2_cons, 3):5} [kg/h]")
528 print(f" H_2_O generated: {round(M_H2O_gen, 3):5} [kg/h]")

529

530

531 ### Export the results

532

533 import datetime
534 date = datetime.date.today()

535 txtdate = date.strftime("%B %d, %Y")
536 time = datetime.datetime.now().strftime("%Hh%M")
537

538 if print_results_to_txt == True:
539 with open(f"exports/Sizing_results - {date} - {time}.txt", "w", encoding="utf8") as export_file:
540 export_file.write("RESULTS OF THE PEMFC SIZING PROCESS\n\n")

541 export_file.write(f"Results of {txtdate} - {time}\n\n\n")
542

543 export_file.write(" > Input parameters\n")

544 export_file.write(f"\t Mean power: Ps = {int(Ps):5} [W]\n")
545 export_file.write(f"\t Max power available: Pmax = {int(P_maxi):5} [W]\n")
546 export_file.write(f"\t Operating voltage: Us = {Us:5} [V]\n")

547 export_file.write(f"\t Hydrogen inlet pressure: P_H2 = {P_H2:5} [bar]\n")
548 export_file.write(f"\t Oxygen inlet pressure: P_O2 = {P_air:5} [bar]\n")
549 export_file.write(f"\t Operating temperature: Ts = {Ts-273:5} [°C]\n\n")

550

551 export_file.write(" > Results\n")
552 export_file.write(" > Global specifications\n")

553 export_file.write(f"\tNumber of cells in series: N_cell = {round(N_cell):5}\n")
554 export_file.write(f"\t Cell area: A = {round(A*1e4, 1):5} [cm²]\n")
555 export_file.write(f"\t Stack mass: m = {round(m, 1):5} [kg]\n\n")

556 export_file.write(" > Specifications at mean power\n")
557 export_file.write(f"\t Stack operating voltage: Us_mean = {round(Us_mean, 0):5} [V]\n")
558 export_file.write(f"\t Stack operating current: Is_mean = {round(Is_mean, 0):5} [A]\n")

559 export_file.write(f"\tStack operating current density: i_mean = {round(i_mean*1e-4, 2):5} [A/cm²]\n")
560 export_file.write(f"\t Load of the stack: Ls = {round((Ps_init/P_maxi)*100, 2):5} [% of max

power]\n")

561 export_file.write(f"\t Mean efficiency: eff = {round(eff_mean, 2):5} [%]\n\n")
562 export_file.write(" > Fuel cell consumption and emission\n")
563 export_file.write(f"\tHydrogen consumed: H2_cons = {round(M_H2_cons, 3):5} [kg/h]\n")

564 export_file.write(f"\t Oxygen consumed: O2_cons = {round(M_O2_cons, 3):5} [kg/h]\n")
565 export_file.write(f"\t Water emitted: H2O_gen = {round(M_H2O_gen, 3):5} [kg/h]\n")
566

567 VIfig.savefig(f"exports/V-I diagram - {date} - {time}", dpi=300, bbox_extra_artists=lgd)
568 missionfig.savefig(f"exports/Mission Profile - {date} - {time}", dpi=300)

30

Bibliographical references

[1] “System Lifecycle Process Models: Vee - SEBoK.”

https://sebokwiki.org/wiki/System_Lifecycle_Process_Models:_Vee (accessed May 08,

2023).

[2] G. Tsotridis, A. Pilenga, M. G. De, and T. Malkow, “EU HARMONISED TEST

PROTOCOLS FOR PEMFC MEA TESTING IN SINGLE CELL CONFIGURATION

FOR AUTOMOTIVE APPLICATIONS,” JRC Publications Repository, Jan. 27, 2016.

https://publications.jrc.ec.europa.eu/repository/handle/JRC99115 (accessed May 02,

2023).

[3] J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, P. R. Roberge, and T. J. Harris,

“Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell: I .

Mechanistic Model Development,” J. Electrochem. Soc., vol. 142, no. 1, pp. 1–8, Jan. 1995,

doi: 10.1149/1.2043866.

[4] R. Maurya, R. Das, A. K. Tripathi, and M. Neergat, “Relationship between the electron-

transfer coefficients of the oxygen reduction reaction estimated from the Gibbs free energy

of activation and the Butler–Volmer equation,” Phys. Chem. Chem. Phys., vol. 25, no. 1,

pp. 700–707, Dec. 2022, doi: 10.1039/D2CP04331A.

[5] F. Barbir, “Chapter Three - Fuel Cell Electrochemistry,” in PEM Fuel Cells (Second

Edition), F. Barbir, Ed., Boston: Academic Press, 2013, pp. 33–72. doi: 10.1016/B978-0-

12-387710-9.00003-5.

[6] F. Barbir, “Fuel Cell Basic Chemistry, Electrochemistry and Thermodynamics,” in Mini-

Micro Fuel Cells, S. Kakaç, A. Pramuanjaroenkij, and L. Vasiliev, Eds., in NATO Science

for Peace and Security Series C: Environmental Security. Dordrecht: Springer Netherlands,

2008, pp. 13–26. doi: 10.1007/978-1-4020-8295-5_2.

[7] R. O’Hayre, S.-W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals. John Wiley

& Sons, 2016.

[8] R. Omrani, “Chapter 5 - Gas diffusion layer for proton exchange membrane fuel cells,” in

PEM Fuel Cells, G. Kaur, Ed., Elsevier, 2022, pp. 91–122. doi: 10.1016/B978-0-12-

823708-3.00017-1.

[9] M. Schröder, F. Becker, J. Kallo, and C. Gentner, “Optimal operating conditions of PEM

fuel cells in commercial aircraft,” Int. J. Hydrog. Energy, vol. 46, no. 66, pp. 33218–33240,

Sep. 2021, doi: 10.1016/j.ijhydene.2021.07.099.

[10] Z. Abdin, C. J. Webb, and E. MacA. Gray, “PEM fuel cell model and simulation in

Matlab–Simulink based on physical parameters,” Energy, vol. 116, pp. 1131–1144, Dec.

2016, doi: 10.1016/j.energy.2016.10.033.

[11] M. Tellez, J. Escorihuela, O. Solorza-Feria, and V. Compañ, “Proton Exchange

Membrane Fuel Cells (PEMFCs): Advances and Challenges,” Polymers, vol. 13, p. 3064,

Sep. 2021, doi: 10.3390/polym13183064.

[12] M. Mori, R. Stropnik, M. Sekavčnik, and A. Lotrič, “Criticality and Life-Cycle

Assessment of Materials Used in Fuel-Cell and Hydrogen Technologies,” Sustainability,

vol. 13, p. 3565, Mar. 2021, doi: 10.3390/su13063565.

[13] A. A. Ebrahimzadeh, I. Khazaee, and A. Fasihfar, “Numerical investigation of

dimensions and arrangement of obstacle on the performance of PEM fuel cell,” Heliyon,

vol. 4, no. 11, p. e00974, Nov. 2018, doi: 10.1016/j.heliyon.2018.e00974.

[14] F. Huang, D. Qiu, S. Lan, P. Yi, and L. Peng, “Performance evaluation of commercial-

size proton exchange membrane fuel cell stacks considering air flow distribution in the

manifold,” Energy Convers. Manag., vol. 203, p. 112256, Jan. 2020, doi:

10.1016/j.enconman.2019.112256.

[15] C. Lamy and J.-M. Leger, “Les piles à combustible : application au véhicule électrique,”

J. Phys. IV, vol. 04, no. C1, pp. C1-253-C1-281, Jan. 1994, doi: 10.1051/jp4:1994119.

