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Abstract

Among all the technologies that currently exist, Proton Exchange Membrane Fuel Cell (PEMFC) has
the best characteristics for transportation purposes. As PEMFCs are very complex systems, the
architecture can be chosen and optimized for different working conditions depending on the usage and
environment constraints. As PEMFCs are not yet widely used, very few models are currently available
on sizing software. Mainly for educational purposes, we developed a PEMFC dimensioning script, to
predict optimised performance and configuration of a stack, and a simulation model to provide a means
of manipulating the different configurations of the entire system. We elaborated a complete analytical
model from each component governing equations and electrochemical laws. The python implementation
as well as the simulation model consisted in an ordered assembly of these sub-system equations. By
making some simple assumptions, we were able to reduce the computational requirements of the model,
making it suitable for simulating an entire fuel-cell stack as part of an energy system. The model has
been tested and emulates experimental data well across the current density range. We have obtained a
user-friendly simulation tool that allows for the exploration of the influence of each specific system
component.
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Introduction

In the frame of a global energy transition, the development of new technologies in the field of
power systems and electrification is mandatory. A very promising technology is the fuel cell. Fuel cells
produce electricity with an easily storable fuel, like hydrogen, methanol, ect. Such a system is designed
to be integrated in transport and to assist or even replace batteries which are not adapted for a massive
electrification in this field. Fuel cell systems are complex and made of different sub-systems. The main
sub-system is the fuel cell stack. A chemical reaction will take place in this component. To obtain the
best efficiency, the reactants must be in very specific thermodynamic conditions. Then, a comprehensive
system is an architecture composed by compressors, heat exchangers, turbines, pressure regulators, ect.

For the conception of such complex systems, we used a ““V”’ conception cycle, as depicted in the
figure below:
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Fig.1: The “V” conception cycle [1]

On the left side of the “V”, the conceptor aims to size a system which corresponds to the
specifications of the customer, going more and more in the details, until reaching the bottom of the “V”.
Then, the conceptor needs to verify the designed system: does it reach the initial targeted performances?
Do the different subsystems work well together? This second part of the conception cycle aims to
perform different simulations on the system, to test it and to validate its specifications.

The purpose of our project is to build tools in order to carry out such “V” conception cycles, and
make them accessible and understandable for educational cases of use.

This report describes the work done as part of this project led by Dr lon Hazyuk at Institut Clement
Ader. The project was divided in two distinct parts, led independently:
- Develop a sizing tool on Python for Proton Exchange Membrane Fuel Cell (PEMFC)
- Create a library of components on a multiphysical simulation software for the modelling and
simulation of PEMFC systems



For the sizing tool, we will detail the implementation, in the code, of the equations found during
the literature review. We will also provide the first results obtained, and discuss their relevance by
comparing them with already existing systems. Concerning the simulation tool, we will present an
overview of the components chosen or coded to build the library. We won’t be able to provide results
as we have not finished this aspect of the research project yet.



Sizing tool

1. Introduction to the sizing tool

As the two aspects of the project are led independently, this paper will firstly report the work done
for the sizing tool before moving onto the simulation tool.

This tool aims to dimension the PEMFC stack only, it does not deal with the different subsystems
needed to make the stack work well. Thus, we suppose here that the surrounding sub-systems are
perfectly tuned to feed the PEMFC stack as it is designed in the sizing tool. The work achieved in this
part led to a Python code implemented in Jupyter Notebook environment. We chose this option to add
markdown text between our lines of code to physically explain and make it clearer.

1.1. Input and output parameters

This code addresses the left part of the “V” conception cycle, then the input parameters are the
specifications we can find in a set of requirements from a customer, who builds a car or a plane for
example. The output parameters are the geometrical characteristics of the stack, the operating
characteristics of the designed stack and the theoretical fuel consumption. The parameters are detailed
in the table below:

Input parameters Output parameters
Name Type/Unit Name Type/Unit
Power mission profile Time and Power Number of cells in Scalar [-]
(function of time) vectors [s], [W] series
Required stack voltage Scalar [V] Cell area Scalar [cm?]
Hydrogen inlet Scalar [bar] Stack mass Scalar [kg]
pressure
Aiir inlet pressure Scalar [bar] Specifications at mean power
o Stack operating
Stack temperature Scalar [°C] voltage Scalar [V]
Stack operating Scalar [A]
current

Stack operating Scalar [A/cm?]
current density
Scalar [% of max

power]

Load of the stack

Mean efficiency Scalar [%]

H2, O, consumption

H>0 production Scalars [kg/h]

Table 1: Input and output parameters

Notes:
- State-of-the-art PEMFC systems use the same hydrogen and air pressure to avoid internal
stresses
- We assume the entire stack to be at the same temperature, as we use 0D model and equations



1.2. The different versions of the code

We have currently implemented 5 different versions. The current working version is 4.1.2 We will
provide an overview of the 5 finished versions.

1.2.1. Version 1

The first version aimed at implementing the basis equations for plotting the V-I diagram.
The implemented equations were the following ones:

- Nernst equation

- Activation losses (bugging)

- Ohmic losses

- Mass transport losses (bugging)

1.2.2. Version 2

The current program improves the following points compared to V1:
- Better explanation of the comments
- Actualization of the mass transport losses constants
- Calculation of the stack power and efficiency function of the current density
- Better V-I plot including power and efficiency curves
- Calculation of the design points: maximum power and best efficiency

1.2.3. Version 3

The current version aims at improving/implementing the following parts compared to V2:
- Implement some volume and mass estimations for a state-of-the-art PEMFC
- Finalize the V-I diagram and validate it
- Propose another performance definition based on a cost function including a weighted stack
mass
- Propose minimum volume and mass design points

1.2.4. Version 4

This 4th version aims at implementing a "mission profile" input:
- Add a mission profile input for power with a fixed voltage
- Add experimental data from manufacturers on the theoretical V-1 curve
- Find an accurate value for mass density of a PEMFC stack

1.2.5. Version 4.1.1 (latest)

This latest version brings a few improvements:
- Implementation of a standard mission profile
- Split V-I diagrams to make them easier to read

In the next section, we will focus on version 4.1.1.



2. Code structure explanation

In this section, we will detail each section of the Python code. The full code is available in the
appendix section.

2.1. General structure

‘ CODE STRUCTURE J
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Fig.2: Flow chart of the sizing tool

We first designed a flowchart in order to set up the order of the code calculations. In fact, we
preliminarily needed to check if there were no interdependencies. Therefore, as can be seen above, we
placed in green the input parameters. It was needed to be able to calculate all the other values starting
from them. In red, we can observe the resulting values we can use for sizing a PEMFC stack or
controlling its quality.

The following parts of this chapter will attempt to clarify the content of this flow chart and the
equations and methods used to go from one box to another.

2.2. Power mission profile

For the design of energy conversion systems, conceptors usually use a power mission profile, which
is a representation over time of a typical mission for the designed system. This faithfully models the
needs of a system and optimizes the design of the energy converter according to different criteria. Here
is an extract of the mission profile presented in the EU harmonised test protocols for PEMFC MEA
testing in single cell configuration for automotive applications [2] used in PEMFC pollution tests.
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Fig.3: Extract of the EU harmonized mission profile

2.3. Performance function

To determine the design point, the user can define a performance function that will be maximized
during the dimensioning process. This function can use the following variables:

- Efficiency of the stack

- Stack mass

- Stack power

The user can add coefficients to the variables, to obtain a performance function with this shape:

Fperf = €= Ky -m— Ky, - P

2.4. Equations and fixed parameters

We will now detail the equations used to model the behaviour of the PEMFC stack as well as the
parameters taken from state-of-the-art literature.

2.4.1. Open circuit voltage (Nernst equation)

This is the optimal (theoretical maximum) voltage reachable computed with the Nernst equation.
This voltage would be obtained without losses.

RT.
Upc = Erer + Z—FS ’ ln[pHZ Y Poz]

AS,
Erev = Egev + (Ts - Tref) ’ E



(R: universal gas constant (8.3144 J - mol™1- K1)

%: standard state entropy change (—0.85- 1073 V - K~1: [2] page 5)
F: Faraday constant (96485 C - mol™1)

With: { Erev: reversible voltage )

Pu2: hydrogen partial pressure (atm)

Poz: oxygen partial pressure (atm)

EL,,: standard state reference potential (1.229 V: [2] page 5)

Tyer: standard state temperature (298.15 K)

2.4.2. Activation losses

Some voltage difference from equilibrium, called overpotential, is needed to get the
electrochemical reaction going. In a hydrogen/oxygen fuel cell, the oxygen reduction requires much
higher overpotential. Thus, we will focus only on the cathode side. State-of-the-art cathodes are covered
by platinum, we then give appropriate values for this case of study.

RT,
Ugere = E . log(t + LO’C)

c

Y
. . Po2 E T,
oc =i acote (B) e o (175 )
S re

02

(a. : transfer coefficient (0.65 [0.5 — 0.7]: [3] abstract)

iy ¢ exchange current density on cathode side (4 - m~2)

i(r,if : reference exchange current density (1-10734-m™1: [4])

With: 4 g : catalyst specific area (800 [600 — 1000] cm? - mg~*: [6] page 18)

L, : catalyst loading (0.3 [0.3 — 0.5] mg - cm™2: [6] page 18)

y : pressure dependency coefficient (0.5: [6] page 18)

\E. : activation energy for oxygen reduction (66 - 103 J - mol~1: [5] page 18)

2.4.3. Mass transport losses

This loss is due to a diffusion process. H, and 0, must diffuse through the electrodes to react. The
consumption of reactants on the catalyst surface results in the creation of a concentration gradient
through the diffusion layer (in our case the thickness of the electrode). This consumption can reach a
maximum value (when reactant concentration on the catalyst layer reaches 0) and corresponds to a limit
current that a fuel cell will never be able to overtake. Similarly to the activation losses, we can neglect
the mass transport losses on the anode (H?) side because the limit current on the cathode side will be
much lower than on the anode side. This is because air is used (rather than pure oxygen) which makes
0? diffusion slower than H? [7].

RT, Iy
Um: s_ln( lim i)

nF ilim —
 nFDC,,
liim = T



i1im : limit current density (4 - m™2)

D : diffusion coefficient of cathode GDL (5 - 1073 m? - s™1)
Cy, : concentration of 0, on cathode side (mol.m~3)

6 : diffusion layer thickness (100 € [100 — 400] um: [7])

With: [7]

Note: The value of the diffusion coefficient was adjusted to get a value of i;;,, close to 2 A/lcm? as it is
a common value for state-of-the-art PEMFCs and we were not able to find a value for D in literature.
This value can be modified by the user if needed for its own applications.

2.4.4. Ohmic losses

Ohmic losses occur because of resistance to the flow of ions in the electrolyte and resistance to the
flow of electrons through the electrically conductive fuel cell components. These losses can be simply
expressed by Ohm’s law:

With:
R;: total cell internal resistance (0.14 € [0.1 — 0.2] - 1073 2 - m~2: [5] page 20)
R; ;: ionic resistance (2 - m~2) o _

R; .: electronic resistance (2 - m™2) [5] page 20R;;: fonic resistan
R; .: contact resistance (2 - m™?)

m~%)R; .: electronic resistance (2 - m~%)R; .: contact resistance (£2 - m~?)

Electronic resistance is almost negligible. lonic resistance mostly depends on the state of hydration
of the polymer membrane. Contact resistance depends on the materials used for GDL and bipolar plates.
Typical values for R; in well-designed fuel cells are between 0.1 and 0.2 2. cm™2.

There are other models available to compute this resistance more precisely in [9], [10], using
models to evaluate the conductivity of the different components. We could also capture more precisely
the impact of the membrane hydration on the ionic resistance if needed. For a pre-dimensioning study,
the range above is sufficient.

2.5. V-l diagram

2.5.1. Expression

The V-I diagram is the most important data for a conceptor to design a PEMFC stack. It gives the
curve relating the voltage of the stack with the current density in it. Similarly to a chemical battery, the
voltage drops when the current density increases due to the losses detailed above.

The mathematical expression of the V-1 curve is:

Ucell = UOC - Uact(i) - Um(l) - U.Q (l)

The shape of the curve obtained is shown on the figure below:
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Fig.4: Shape of a V-1 diagram

On this figure, we can notice 3 main zones:
- For low current densities (red enclosed area), we observe the effects of activation losses
- The linear middle area is due to ohmic losses
- For high current densities (green enclosed area), we observe a sharp drop due to diffusion

limitations

A PEMFC stack operates necessarily on a point of this curve. The conceptor then aims to choose
the best point to design its system.
2.5.2. Definition of the design points

In the code, we propose several design points. For their computation, we use the efficiency of the
fuel cell, which is designed as follows:

£ = Ucell
Uoc

A first design point is obtained by maximizing the performance function defined in section 2.3.

We can also size the stack at the point giving the best ratio efficiency/mass, which is an alternative
way to the performance function of comparing the efficiency and the mass.

The last implemented design point is the max power design point (which is also the lowest mass).
This would result in a 100% load of the stack.

The distribution of the design points is shown on the figure below:
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Fig.5: V-I diagram with design points

2.6. Mass estimation

In order to compute the design points, we need an estimation of the mass of the stack for each point
on the V-I curve. We then studied the structure of a fuel cell, which is shown on the figures below:

Anode end plate Hydrogen in Oxygen in

Current

4 Graphite plate
Y/ Gasket 4
collector | 73 &

Vv 4

Graphite plate J Gas diffusion layer

Oxygen excess
and water out

Cathode

vdrogen excess end plate

Fig.6.A-B: PEMFC structure and layers [11]

Component  Material Thickness [m] Density [kg/m3] We also summarized the thicknesses,

End plate Aluminium 0,0050 2800 materials and densities of each layer,

Bipolar plate  Graphite 0,0020 1750 shown in the table on the left. More

Gasket  Silicon 0,0002 2300 information can be found in [12], [13].

GDL Carbon Paper  0,0001 600 The dimensions used to compute the

PEM  Nafion 0,0001 1900 mass are calculated using the methods

GDL Carbon Paper 0,0001 600 detailed in the next section (cell area,

Gasket  Silicon 0,0002 2300 number of cells).

Bipolar plate  Graphite 0,002 1750
End plate  Aluminium 0,005 2800

Table 2: PEMFC materials and thicknesses
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2.7. Computation of the results

2.7.1. Verification of the mission profile compatibility

The mission profile entered by the manufacturer represents an evolution of the power requested by
the surrounding systems to the stack. Each power has to be reached, and this is why we must choose the
sizing power for optimized operation of the PEMFC. For this, we start by considering the mean power
regarding the complete profile. Then, we check whether we actually reach the maximum required power
or not. If yes, then the stack operating at its chosen design point is already fulfilling the requirements,
so the output values can be calculated. Unfortunately, most of the time the maximum power reachable
is lower than the required one. In this case, we process iteratively:

Choose a security

margin percentage

over the power to
reach [3]

Choose an
incremental step
g = 0.1%

Initialization

[N
L

h

Calculate the new value of
sizing power [B_]

h

Update all the values that
depends on B,

Loop

Y
i ™y

Calculate the stack maximum
power reachable [2__,;]

MO IF T~ YES Calculate the output
"~ Pmaxi > max(P)-(1+5) values

maxi

Fig.7: Structure of the code to optimize the sizing power

Using this process, the sizing power can be calculated as well as the output values. A real example
will be detailed in section 3.
2.7.2. Outputs calculation

To conclude this part of the process explanation to size a PEM fuel cell, we need to calculate the
output variables. These results are useful to a fuel cell manufacturer to optimize and fit its conception
to the usage of their system.

The results are calculated as follows:

- Number of cells in series:

. (Us
N_eyp = ceil (U)
Us : stack required voltage

Where: {U : cell voltage (from design point)

11



- Cell area:

]~

Where: I; : stack required current
ere- {i : cell current (from design point)
- Total stack mass:

We now have our missing parameters to compute the stack mass. Note that the anode and cathode
plates, also named “end plates”, are not present in every cell. These two plates that compose the structure
of the entire stack are only present in the beginning and at the very end of the stack. They include all the
cells in series located in between them.

From the composition of a single cell and knowing the number of them (determined during sizing
process), we can retrieve the complete composition of the stack. Finally, as we already calculated the
cell area, we know the total volume of each material composing the PEM fuel cell. The global mass can
then be estimated based on the volume and the density of all the materials.

Mstack = E Vmaterial * Umaterial * Mmaterial

material
Mgtack: Stack mass

Vimaterial = 4 * t1 cep : Material volume in one cell

Where: { Umaterial : Material density
Nmaterial - NUMber of occurrences of the material in the stack
t1 cenl : thickness of the material plate in one cell

- Stack consumption and emission

. I
H.
Neons = Neeu - n _SF ’ MH2

0, I
Ncons = Neey - m . MOZ
. I
Hzo _ N
Nemiss = Neell ﬁ ’ MHZO
ng)ZnS : quantity of H, consumed
Ncoozns : quantity of O, consumed

N gfu.oss : quantity of H, 0 emitted
Where: < I_S : stack current as mean operating point

N,epp : number of cells

n : number of electrons exchanged in the redox reaction
F = 96485 [C/mol] : Faraday's constant

\M, : molar mass of the specie e

- Stack load at operating point
At operating point, we can define the stack load as the ratio between the mean power of the mission
profile and the maximum reachable power.

P mission

Ly =

P maxi

These are all the deciding parameters and information for the conception of a PEMFC stack that a
manufacturer can manipulate depending on the usage and the chosen function of performance. This
function has a great impact on how the stack is sized, and it is a useful tool when conceiving a fuel cell
for very specific applications.

12



3. Study of a standard case

This section will focus on how we experienced with and tested developed sizing tool. This step is
necessary to verify that the computed results are reasonable and fit with potential experimental data.

3.1. Standard pollution test

3.1.1. Fuel cell input parameters

PEMFC tends to become common in the transportation industry due to its high level efficiency,
low operating temperature and high energy density. Therefore, the European Commission has tried to
elaborate a harmonized test to qualify a vehicle-implemented PEM fuel cell. These operating conditions
and initial parameters are found in [1].

As our sizing tool is now able to represent any configuration, we chose to test it with the standard
pollution test presented by the European Commission. Here are the input parameters implemented to
run the procedure:

The power mission profile is the one presented in Fig.2.

Stack voltage: U; = 800 [V] (not mentioned in [1], but this value has been chosen for a common
car example).

Air inlet pressure: 2.3 [bar]

Hydrogen inlet pressure: 2.3 [bar]

In our test, we will define the following performance function:
Fperf = €= Kp'm
€ : efficiency
Where: {K,,, : mass impact coefficient
m : stack mass

We set the mass coefficient to K,,, = 10 - 1073, This value gives the mass a relatively average
importance, typically for a road vehicle. In an aerospace application, we could increase the mass
coefficient to have a better performance when the system weight is low. However, in a bus or boat
application, the mass does not have a great of impact, so the K,,, value can be decreased.

The following Fig.8 shows the look of the performance function in our car pollution test.

20.0
1.1+
r17.5
1.0 1
0.9 4 r 15.0
g 0.8 Fperf, max e
w 0.7 o
o =
o =
= 0.6 10.0
2 051 5
T 75 =
O 0.4
0.3 1 r 5.0
— V-l curve
0.2 7 a5 Efficiency
0.1 ' — Perf. function
* Fperf.mdx

0.0

. . . . ; . . . . . —L- 0.0
00 02 04 06 08 10 12 14 16 18 2.0
Current density [A/cm?]

Fig.8: Performance function in the case of a car pollution test stack optimization
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This function is supposed to give a performance overview of the PEMFC. It is used to choose a
design point on the V-1 curve.

3.1.2. PEM fuel cell sizing results

By running the optimization program, we have sized the fuel cell stack to the input requirements.
In fact, by requesting the specific mission defined by all the parameters, we finally obtained the stack
characteristics as a result. It can be seen on the following picture the initial power mission profile, from
which the initial mean power was used at the first iteration to size the stack. In green, we can see the
final sizing power to which the program converged. This sizing power allows the PEMFC to reach every
power value of its mission, while remaining the most efficient at the operating point.

Power mission profile

200001 ___ Mean power: 6464 [W]

—-=— Actual sizing power: 7486 [W]

17500 +

15000 4

12500 +

10000 +

Power [W]

7500 4

5000

2500 4

T T T T T
0 25 50 75 100 125 150 175 200
Time [s]

Fig.9: Power mission profile showing the sizing power after sizing process

The program is tuned to size the stack so that the maximum power to reach is 5% above the
maximum power required by the power profile. Therefore, we can observe the following characteristics
for the stack performance:

Sizing power: 7486.7 [W]
Required maximum power: 19662.9 [W]
Stack maximum power available: 20700.0 [W]

Global specifications of the stack size to be optimized for the initial parameters:

Number of cells in series: 1080 [-]
Cell area: 21.5 [cm?]
Stack mass: 11.1 [kg]

Characteristics when operating at mean power:

Stack operating voltage: 824.0 [V]
Stack operating current: 8.0 [A]
Stack operating current density: 0.36 [A/cm?]
Load of the stack: 31.23 [% of maximum power]
Mean efficiency: 64.33 [%]

Stack fluid consumption and generation:
H, consumed: ©.316 [kg/h]

0, consumed: 2.530 [kg/h]

H,0 generated: 2.847 [kg/h]

14



In the current configuration, the stack only consumes 0.313 [kg] of dihydrogen per operating hour.
From this value, the autonomy of the vehicle can be calculated knowing the total hydrogen mass on
board. For example, here, we can retrieve the range of the car designed to fit these test conditions:

The standard pollution test power mission profile is designed for a typical city car. Such a car holds
around 6 [kg] of hydrogen and runs at a mean speed of 17.4 [km/h] in the standard pollution test
specifications. Knowing the hydrogen consumption of 0.316 [kg/h], we can deduce the range of this
typical car with optimized parameters calculated by the sizing script:

6
d= m 17.4 = 330 [km]

This value can be compared to a typical electric car range, which would be around 200 to 400 [km]
for city runs. The value calculated fits the general interval, which confirms the reasonability of the script.

3.2. Comparison with experimental data

Lastly, in order to check the correctness of our sizing tool, we can compare the V-I curve produced
by our mathematical model to some experimental data. As we did not have any PEM fuel cell to do
experiments, we found experimental data from the literature.

Fig.10 shows the V-l diagram extracted from the sizing results compared to three lots of
experimental data from different sources with different initial parameters.

— V-l curve

e =175um, T = 80°C
1.0 e = 100pum, T = 70°C
A e =100pum, T = 80°C

1.1+

0.9 A
0.8
0.7 7
0.6 1

0.5 4

Cell voltage [V]

0.4

0.3 7

0.2
0.1+

0.0 T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Current density [A/cm?]
Fig.10: Comparison between theoretical V-I curve and experimental data

As we can see, the V-1 curve we calculated correlates the best with the experimental data having
the same initial parameters as our configuration. This green triangle data is extracted from [14] where
the initial configuration was the following:

T, = 80 °C

Membrane material: Nafion 117
€nafion = 100 pm
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The V-I curve sticks quite well to brown crosses data [15]. In fact, this data is extracted for
experiments where the only modification regarding the data presented above is the operating
temperature. We can observe that this small change has a negligeable impact in this order of magnitude.

Finally, we also plotted experimental data (blue squares) from a test [15] where the membrane was
175 um thick, and it is obvious that this change has a great impact on the look of the V-1 curve.
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4. Review of the sizing script method and results

In this section, we explain the construction of the script we developed to size and optimize a proton
exchange membrane fuel cell stack. This process of design can be requested by manufacturers to
conceive PEMFC stacks and tailor them to their very specific application.

To optimize the characteristics of the stack, a few things are needed. The power mission profile or
the mean, and maximum power as well as the stack working voltage are requested to fit the fuel cell to
the operating conditions. After setting up a performance function that will determine the working point
function of your specific application, it is only needed to set up the fluids inlet pressures, that depend on
the surrounding compressor systems, and the stack temperature. The latter will be determined function
of the stack environment, working conditions and neighbouring systems.

With these few input data, the optimizing process gives you the dimensions of the PEMFC stack
and its mass. It also provides you the hydrogen and oxygen consumption rate per hour as well as the
emission of water in kilograms per operating hour. The efficiency and the nominal stack load are also
estimated.
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Modelling tool

5. Introduction to the modelling tool

In the first part of this report, we discussed how we developed a sizing tool for the PEMFC only
and we considered that the sub-systems around the PEMFC were perfectly tuned to allow optimal
functioning of the PEMFC. In this section we will review the different subsystems that work around the
PEMFC and how we started the modelling process using Dymola.

5.1. PEMFC subsystems

For the PEMFC to be functioning properly a series of components are necessary to condition and
regulate the different parameters.

In the figure below we can see a typical PEMFC architecture used for transport applications.
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Fig.11: System layout - automobile

Here we can see three different circuits. In green the air circuit which consists of an air filter, a
compressor, a humidifier, and a valve. These components are used to condition the ambient air to the
appropriate pressure, temperature, and humidity before it enters the PEMFC. In red we can see the
hydrogen circuit, which consists of a hydrogen source (the tank), a pressure valve and a heat exchanger.
These components also condition the hydrogen by controlling the flow, phase, temperature, and pressure
of the hydrogen before it enters the PEMFC. Finally in blue we have the temperature regulating circuit,
which consists of deionized water, a radiator and fan and a heat exchanger. These components regulate
the temperature of the PEMFC so that it can work in an optimized environment as well as heating up
the hydrogen before it enters the PEMFC.

As you can see, for a PEMFC to work properly a lot of components need to work in harmony with
one another to provide the perfect condition for peak performance.
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5.2. Dymola

Modelling this type of architecture for simulation and test purposes is tedious and while it could be
done using different types of softwares like Simulink, Matlab, and others, we have chosen to use a
software called Dymola as it will give us more freedom in how we can configure the system down the
road.

Dymola is a simulation software initially designed by Hilding Elmqvist in 1978 and stands for
Dynamic Modelling Language. This software, now owned by Dassault System, is a simulation software
tool used particularly for modelling and simulating complex dynamic systems. This software is based
on the Modelica language which allows users to create complex dynamic models in the form of blocks
and components. The Modelica language provides a set of libraries of pre-built components that can be
used to create numerous models and simulations from simple mechanical systems to complex multi-
domain applications. These components or blocks typically represent physical phenomena such as fluid
flow, heat transfer, electrical circuit, and mechanical systems.

Once these blocks or components are coded and modelled, they can be assembled into different
configurations based on the needs and wants of the user. Once the inputs and parameters are entered,
Dymola then generates the equations that describe the behaviour of the system over time, which can
then be analysed as tables and graphs.

Some of the benefits of Dymola and Open Modelica are that its innerworkings involve a
combination of object-oriented modelling, numerical analysis, and Differential-Algebraic System
Solver (DASSL) algorithms to solve these complex multi-domain applications. Another advantage of
Dymola is that the components and model are coded using non directional equations. Meaning that the
software itself will exploit and rearrange the given equations to fit the input parameters given, giving
the users an infinity of possibilities to use different blocks and components in whichever way they need.
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6. Phase one — Exploring and understanding the innerworkings of Dymola
through the analysis of a pump system

Our first phase of the modelling process was to get acquainted with the software by using the
available library to create models and run simulations. As later on we would be modelling components
like compressors and valves which deal with fluids we decided to focus on fluidic components. We first
started by looking at a pump system example.
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Fig.12: Dymola library example of a pump system

In the figure below you can see a pump system example taken directly from the Dymola library.
This model consists of two different parts. The physical components in red and the control components
in green.

6.1. The physical components

The physical components are as follows:
Fluid sources

Pump

Pipe

Reservoir

Valve

Sink

These components and blocks are the core of the model, as they contain equations that translate the
physical properties of the fluid into equations. Each component has their own sets of equations that
enable the software to understand how the fluid moves through the system and how its parameters such
as its temperature, pressure, enthalpy, and phase change by going through the different blocks. One of
the advantages of Dymola is that after a simulation a user is able to retrieve these sets of data as a
function of time at each entering and exiting point of each of the different components.

20



[ =N R >

-
? o |[= | == ) Plot (2]

[ Plot (1]

pumps.m_flow

reservoirlevel
300

23
h M M ]

T N N -
NN N

ﬁ A
o \ J‘ \\J‘ \\\d / 0

[ka/s]

[m]

-50
2000 0

T T T T T T T
400 800 1200 1600 2000

T T T T T T
400 800 1200 1600

Fig.13: Data plots of a 2000 sec simulation of Dymola's pumping system

As we can see in these two plots after the simulation over a period of 2,000 seconds, when the
simulation starts the water level in the reservoir is at 2.2 m high and the pump is off. However, when
the simulation starts, and the reservoir level falls to below 1.83 m the pump turns on to refill the tank to
about 2.22m high and then shuts off again. This analysis brought us to the next question of how we
control the different components to make everything work together in harmony.

6.2. The control components
This is where we started to look at the second part of the model, the control part. The control part

is made up of 6 components.
e Constant (Relative Pressure Set point)

On/Off Controller

Triggered trapezoid (Pump RPM Generator)
First order block (PT1)

Source Step (Valve Opening)

Relative pressure sensor (Reservoir Pressure)

Like we mentioned, our first assumption about the control system was that the pump turned on once

the reservoir level reached 1.83 m. However, when looking closely at the model we realised that the
reservoir pressure sensor was the one giving the information to the control system to turn the pump on
and off. To reinforce our thoughts, we plotted the reservoir pressure and the reservoir height and

validated our thought process as the graphs are visually identical in relation to time.
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Fig.14: Data plots of a 2000 sec simulation of Dymola's pumping system
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6.3. Creating our own test model

After getting acquainted with the pump system presented above, we then decided to try to create
our own system to finalise our understanding of the general innerworkings of Dymola. For that we
created the system below and did not bother to integrate a variable control system as it would not be

necessary for the rest of our project.
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Fig.15: Simple fluid test system

é

Here the goal of our system was to familiarize ourselves with the components and the different
parameters so there is no concrete physical purpose for our model.

Here our model is composed of:
e Source

2 pipes

2 valves

Tank

2 Step control

Sink

In our model we used to step control to delay the opening of the two valves. The first one opens at
200 secs and fills the tank till the second valve opens at t = 400sec and allows the tank to empty into the
sink. Here we are not using a pump, but we are generating current through a pressure difference between
the reservoir and the water source. However, as we know, when the water level rises the pressure at the
bottom of the reservoir increases, therefore the difference in pressure between the reservoir and the

source decreases, which causes the flow to
decrease until the pressure difference is equal to
zero. In our model we did not wait until the
pressure equalized and therefore at t= 400 sec
the second valve opens and drains the fluid into
the sink. Once the valve is open the pressure
difference is so great that the reservoir will
empty fast. This rate will however decrease until
the flow rate coming into the tank and the flow
rate exiting the tank balance out and the
reservoir level becomes constant. This was our
goal, and this is what we observed when we
plotted the reservoir level in function of time as
show in the figure to the side.
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Fig.16: Plot of the tank level
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/. Phase two — Creating a model of a linear valve

Our second phase was modelling our first components. Even though valves do exist in the original
Dymola library, we chose to first model a linear van to ensure that we had a model to compare ours with
in case we needed to debug or detect an error.

7.1. Understanding the structure of the Modelica coding Language

We first started by trying to understand the Modelica language and its structure. Through our work
we discovered that the Modelica language is not very complex as it uses very simple syntax. What makes
Dymola complicated is its use of different libraries throughout its code.

7.2. Dymola libraries and its building blocks

Dymola and the Modelica like previously mentioned is a modelling and simulation software tool
that uses a component-oriented approach to model physical systems. These components can be created
by coding, using the Modelica language, or by combining existing building blocks and bricks.

Libraries in Dymola are collections of pre-built components, and they contain a set of related
models that are organized in packages. A component is made of multiple building blocks and bricks.
These blocks and bricks are specific codes used to define different variables, parameters, and equations.
What is tricky is that each block and brick contain other more fundamental bricks in a never-ending
chain just like a Russian doll. This is advantageous as it removes the need to create a component from
scratch and having to completely redefine and code a whole component. However, this can also be a
very big disadvantage. During our project, this was the case. As our goal was to use as few of the
components as possible to help us understand the inner working of Dymola, we had to search through
the different levels of the bricks and blocks to understand what each of the blocks did and how we could
code our components to our specific needs.

7.3. Modelica structure

The Modelica language is structured into 2 parts: parameters and the equations. However, for the
sake of understanding exactly how everything worked together we further divided these three parts.

7.3.1. Introduction

Introduction is the part of the code where we first needed to import some essential libraries such as
the constant library. As we were trying to limit the number of libraries and blocks in our code this is the
only thing we used, but other more complex components will generally import or “extend” a block. By
extending a block in a code the component will inherit all the brick’s properties and equations.

model LinearValve Test V2
import Modelica.Constants.pi:

Fig.17: First lines of code our linear valve test

model ValvelLinear "Walve for water/steam flows with linear pressure drop"

extends Modelica.Fluid. Interfaces. PartialTwoPortTransport;

Fig.18: First lines of code of Dymola's linear valve
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7.3.2. Parameters, Variables, Inputs

In the Modelica language parameters are used to define a variable that the user will be able to
modify when a specific component is used. These parameters can be furthermore clarified by adding a
specification such as the unit. This is useful as this unit will be seen in the parameter window when a
user uses it and it will also be seen on the plots during a simulation. As you can see in the figure below,
in the case of our linear valve, we chose to define two parameters that will modify the valve. The first
is the valve flow coefficient and the second is the section area of the valve.

// Parameters
parameter Real Cv = 1.0 "Valve flow coefficient™;
parameter Modelica.SIunits.Area A = 0.01 "Valve effective area [m2]";

Fig.19: The parameters of our linear valve test

In this section the user will also be able to define variables. These variables will be a series of non-
fixed values that will be used in the equations later on but must be first defined here. In our case as
shown in the figure below, we defined “dp” as the pressure drop across the valve in pascals and
“m_fLlow” which is the flow rate through the valve in m3/s.

// Variables
Modelica.SIunits.PressureDifference dp "Pressure drop across valve [Pa]l'";
Modelica.SIunits.MassFlowRate m_flow "Flow rate through valve [m3/s]":

Fig.20: The variables of our linear valve test

Finally we must also define the inputs and interfaces of our components so that the software knows
the connections to expect when integrated into a model. In our case, since we are modelling a linear
valve  with one entrance and one exit, we used the modelica brick
“Modelica.Fluid.Interfaces.FluidPort_a/b” toindicate our input and outputs. Since we also

want to control the opening and closing of said valve, we needed to specify that an input
“valve_opening?” is necessary.

//Block's Inputs
Modelica.Fluid.Interfaces.FluidPort a port_a

’ a;

Modelica.Fluid.Interfaces.FluidPort b port_b
t d ;

Modelica.Blocks.Interfaces.ReallInput valve_opening (min=0, max=1)
t d ;

Fig.21: The inputs of our linear valve test

Once defined these inputs and outputs can be seen on the graphic display of the components as two
circles for the two ports and one arrow for the valve opening input.

Auuada 3/

port_a port_b

Fig.22: Graphic representation of our linear valve model
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7.3.3. Equations

The equation part of the code is the most important and the core of the code. This is where the user
can translate physical phenomenon as equations. With these equations the software can solve the system
and find all the unknowns that will represent in function of time the model. Here again we can subdivide
this part into two parts: governing equations and fundamental equations.

The governing equations are the equation that will enable our component to manipulate the variable
as a physical component would.

equation
/4 Pressure dropiproblem with negative wvalues added {(abs))
dp = abs(port_a.p - port_b.p):

" Flow rate
m flow = Cv * A ¥ sqrt(dp) * walve_opening;

// Design direction of mass flow rate (PTPT)
m flow = port_a.m flow:

Fig.23: The equations of our linear valve test

The fundamental equations are equations we had to implement as we did not use any of Dymola’s
bricks. In reality, these equations are automatically implemented when using the blocks but, in our case,
we had to do it ourselves. The fundamental equations are equations that ensure that all rules of physics
are respected such as mass balance, phase, the percentages of the different particles in a fluid.

// Mass balance [[no storage)
port _a.m_flow + port b.m flow = 0;

" Isenthalpic state transformation (no storage and no loss of enerdgy)
port_a.h outflow = inStream(port_b.h outflow);
port_b.h outflow = inStream(port_a.h outflow);

'/ Transport of substances
port_a.Xi_outflow = inStream(port b.Xi outflow):
port b.Xi outflow = indtream(port a.¥i_ outflow):

port_a.C_outflow
port_b.C_outflow

inStream(port_b.C_outflow);
indtream(port_a.C_outflow);

Il

end LinearValve Test VZ:

Fig.24: The fundamental equations of our linear valve test
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8. Phase three — Incorporating a compressor model

After we became acquainted with the software and the modelling language our next task was to
incorporate Mr. Hazyuk’s own compressor in a model.

valveOp. ..

boundary

Intake

v!lveL]’n s

Fig.25: Compressor implementation into a system

The goal of this model was to compress a fluid and control its flow using a valve. However, after
long hours of debugging and trying to figure out where the errors were, we were not able to run a
successful simulation. This is due to the fact that in our model we have 64 scalar unknowns and only 63
equations. This is obviously unsolvable, and we tried to go through the different bricks of the
components but to no avail. However, this experience helped us further understand how the software

works and how to accurately tailor the libraries to our needs.

) The problem is structurally singular.

1) It has 64 scalar unknowns and 63 scalar equations.
The Real part has 64 unknowns and 63 equations.
The Integer part has 0 unknowns and 0 equations.
The Boolean part has 0 unknowns and 0 equations.
The String part has 0 unknowns and 0 equations.

Fig.26: Error messages after simulation
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9. Review of the Modelling Tool

Through this project and working with Dymola, we faced many challenges, but through it we
gained a lot of useful knowledge. Understanding the innerworkings of Dymola had its learning curve
but by digging into the Modelica language we now better understand its functionalities and capabilities.
By studying Dymola’s libraries and its models we learned how to efficiently organize and manage the
components required for our future models. We also gained first-hand experience in creating and coding
our own components, learning how to manipulate the different bricks and blocks that Dymola proposes
to easily obtain a functioning model. This experience provided us with a deeper understanding of the
component’s behaviour, characteristics and interaction within the broader context of a simulation. We
also learned how to translate physical laws into systems of equations to define the properties and
dynamics of the components.

While we are very satisfied with the learning experience, we however remain slightly frustrated as
we were not able to create a functioning model with Mr. Hazyuk’s own library. We do believe that with
more time we would have been able to finalize this model and move on to the creation of more
components, but this is part of the process, and we hope to accomplish the rest of this project next
semester.

27



Conclusion — Discussion

This research project was divided into two parts. In the first phase, during the first semester, we
researched the ins and outs of a PEMFC. We identified the different architectures and analysed their
different components to comprehend how each piece of this big puzzle interacted with each other to
turn hydrogen and air into electricity. Through this phase we also had to dive into the world of physics
to learn how technologies were implemented to create the perfect working environment to optimise
this process. With all this knowledge we wrote our state of the art.

In our second phase, our goal was also divided into two parts. First to create a sizing tool that would
be able to dimension a PEMF cell according to different parameters such as power consumption and the
external environment. Through this process we created a python code enabling us to manipulate different
governing equations and inputs to give us an optimised efficiency of the stack and the corresponding
stack characteristics.

Finally, this project is not yet finished. This report comes too early compared to the final
adjustments we could have made to the models. The Modelica component library is not yet elaborated,
and some important evolutions of the sizing optimization remain outstanding.

Concerning the script, it currently works well and does fit with the requirements we stated at the
beginning of the project, but we could have improved the following elements:

- Better power optimization based on the mission profile: the current optimization is based on the
average value of the power mission profile. This does work, but since the efficiency of the stack
varies along the V-I curve, it varies when changing the stack power supply, during the mission.
Therefore, in a future version, it would be better to iteratively go through the mission profile to
derive a function of several variables (including efficiency, for example) to find its extremum.
Such an optimization would be more efficient for manufacturers.

- Derive the K,,, value from a vehicle model: using a vehicle simulation model and a real complete
mission profile, it would be feasible to derive the Km value used in the performance function
from a mean calculation of the variation of power function of the variation of total mass
(including hydrogen tank): K,,, = op

OMmyor
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# -%- coding: utf-8 -*-

nun

tHHHH Sizing program for PEMFC #HHHH}

This code is a tool to size a PEMFC stack. This is based on governing equations derived analyticaly from physical laws.
Those equations use parameters with physical meaning. The hypothesises and references used can be found in the attached

litterature.

@authors: Mathis DE MONTAZET and Felix BONNES, INSA Toulouse, 2023

wun

##H Instructions

# The desired PEMFC properties must be filled in the "Input parameters" section.

# The state of the art parameters used for calculation as well as their acceptable range can be consulted in "State-of-

the-art parameters" section.

# The sources used are detailed in the "Sources" section of the report.

tHHt Versions

# _ Version 1 (old):__

The first version aimed at implement the basis equations for plotting the V-I diagram.

#

# The implemented equations were the following ones:
# - Nernst equation

# - Activation losses (bugging)

# - Ohmic losses

# - Mass transport losses (bugging)

E=3

__Version 2 (old):__

The current program improves the following points compared to V1:
- Better explanation of the comments
- Actualisation of the mass transport losses contants

- Better V-I plot including power and efficiency curves
- Calculation of thedesign points: maximum power and best efficiency

R B OB R

The following points show mistakes or are not fully understood:
- Understanding of $i_{0,c}$

- Activation offset seams wrong

- $U_{act}$ definition is not sure

- GDL diffusion coefficient cannot be found in the litterature

R B B R

# _ Version 3 (old):__

The current version aims at improving/implementing the following parts compared to V2:
- Implement some volume and mass estimations for a state of the art PEMFC

- Propose another efficiency definition based on a cost function including a weighted stack mass

#

#

# - Finalize the V-I diagram and validate it

#

# - Propose minimum volume and mass design points
# _ Version 4 (current and final):__

# This final version aims at implemeting a "mission profile" input:

# - Add a mission profile input for power with a fixed voltage

# - Add experimental data from manufacturers on the theorical V-I curve
# - Find an accurate value for mass density of a PEMFC stack

nun

BEGINNING OF THE PROGRAM

nun

##Ht Import of librairies

import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import interpld

#H# Input parameters

“[t, P]° = Power mission profile\

“Us® = $U_s$ is the required stack voltage, in [V] \

TP_H2" = $P_{H_2}$ is the hydrogen inlet pressure, in [bar] \
“P_air’ = $P_{air}$ is the air inlet pressure, in [bar] \

HOR B R R

- Calculation of the stack power and efficiency function of the current density

“Ts™ = $T_s$ is the operating temperature of the stack, in [°C]. The usual temperature is about 80°C. *Play with it!x



83

84

85| tH# Power mission profile definition

86

87 | # Possibility to import data from database

88 E i [0, 10.32, 15.48, 22.70, 29.93, 49.54, 61.92, 84.62, 97.0, 117.65, 144.48, 154.80, 164.09, 176.47, 185.55, 200] #
s] Time

89 F_av = 140e3/356 #{N] Typical car forward force

90 speed = [0, 0, 15, 15, 0, 0, 31.5, 31.5, @, @, 50, 50, 35, 35, 0, 0] #m/s] Car speed
91 P = [speed[e] * F_av for e in range(len(t))] #Hw]

92

93 # First iteration mean power calculation

94 Ps = np.mean(P) #{W] Mean power based on dataset input power (not interpolated power!)
95 Ps_init = Ps

96

97 fig, ax = plt.subplots(1)

98 plt.plot(t, P, 'r', zorder=90)

99 plt.scatter(t, P, c='b', marker='+', s=80, zorder=99)

100 plt.plot([min(t), max(t)], [Ps, Ps], 'm-.', lw=0.7, zorder=1, label=f"Mean power: {int(Ps)} [w]")
101 plt.grid()

102 | plt.title("Power mission profile")

103 plt.xlabel("Time [s]")

104 plt.ylabel("Power [W]")

105 plt.legend(loc="upper left")

106 | plt.show()

107

108 | ## Other parameters

109

110 Us = 800 #{ V] Stack required voltage
111

112 | # State-of-the-art PEMFCs use the same pressure for H2 and air to avoid internal stresses in the stack
113 P_H2 = 2.3 #{bar] Hydrogen inlet pressure

114 | P_air = 2.3 #{bar] Air inlet pressure

115| Ts = 80 #{°C] Stack temperature

116

117 | # If you want to export the results to a TXT file, change the following variable to “True’
118 print_results_to_txt = False

119

120

121 ##Ht Design point

122

123 | # To determine the design point, the user can define a performance function that will be maximized during the
dimensionning process. This function can use the following variables:

124

125 # - The “efficiency” of the stack
126 # - The stack “mass’

127 | # - The stack “power’

128

129 | ## Performance function

130 def F_perf(eff, *xPar):

131 return eff - Par['K_m'] * Par['m'] # - Par['K_p'] * Par['P']
132 # return eff / (Par['m']+Par['N_cell'])

133

134 K_m = 10 * le-3 # Mass influence parameter

135

136

137 | ##Ht Calculations from input parameters

138

139 # T_s[K] = T_s[°C] + 273.15

140 | Ts = Ts+273 #{K] Temperature of the stack in Kelvin
141

142

143 | tHHt Constants definition

144

145 R = 8.314 #HJ/mol/K] Perfect gaz constant

146 F = 96485 #{C/mol] Faraday's constant

147 | Tref = 293.15 #{K] Reference temperature

148 Pref = 1 #{bar] Reference pressure

149 x_02 = 0.21 #{-] Molar fraction of 02 in air

150 n = 2 #{-] Number of electrons exchanged in redox reaction
151

152

153 | ##Ht State of the art parameters

154

155 # _ Open circuit voltage__

156 | # This is the optimal (maximum) voltage reachable computed with the Nernst equation. It would be obtained without
losses.

157

158 | Erev_@ = 1.229 #V] Standard state reference potential

159 delta_S0_nF = -0.85e-3 #{V/K] Standard state enthropy change
160

161 # _ Activation losses__ \

162 | # Some voltage difference from equilibrium, called overpotential, is needed to get the electrochemical reaction going.
In a hydrogen/oxygen fuel cell, the oxygen reduction requires much higher overpotential. Thus, we will focus only on
the ca{hode side. State of the art cathodes are covered by platinum, we then give appropriate values for this case of
study.
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alpha_c = 0.65 #{-] Transfer coefficient for Oxygen reduction on Platinum [0.5 - 0.7]
i_@c_ref = le-3 #{A/m] Reference exchange current density for Oxygen reduction on Platinum
a_c = 800 #{cm2/mg] Catalyst specific area [600 - 1000]

L_c = 0.3 #Hmg/cm?] Catalyst loading [0.3 - 0.5]

gamma_c = 0.5 #H -] Pressure dependency coefficient for cathode side

E_c = 66e3 #{J/mol] Activation energy for Oxygen reduction on Platinum

# _ Mass transport losses__ \

# This loss is due to a diffusion process. $H_2$ and $0_2$ must diffuse through the electrodes to react.

D = 0.625e-6 #{m2/s] Diffusion coefficient of cathode GDL (carbon paper) [adjusted to have i_lim = 2 A/cm?]
delta = 100e-6 #{m] Diffusion layer thickness [100 - 400]

# _ Ohmic losses__ \

# Ohmic losses occur because of resistance to the flow of ions int the electrolyte and resistance to the flow of
electrons through the electrically conductive fuel cell components.

R_i = 0.11e-4 #HOhm.m2] Total cell internal resistance [0.1 - 0.2]e-4

tHHt V-1 diagram
p_02 = P_air*x_02 #bar] Partial pressure of 02

# Mass transport coefficients (cathode side only, as anode side losses are neglectable)
C_02 = (p_02%1e5)/(R«Ts)
i_lim = (n*F*D%C_02)/delta

i = np.linspace(1, np.ceil(i_1im/1000)*1000, 1000) # A/m2] Range of current density to study

## Nernst Equation
Erev = Erev_0 + (Ts - Tref)xdelta_S0_nF #V] Reversible voltage
U_oc = Erev + (RxTs/(n*F))*np.log(P_H2x(p_02)*%0.5) #{V] Open circuit voltage

## Losses
# Activation losses (cathode side)
3_0c.= i_0c_ref*a_c*L_c*x(p_02/(Prefxx_02))**xgamma_cxnp.exp(-(E_c/(R*Ts))*(1-(Ts/Tref))) #{A/m2] Exchange current
ensity
print(f"i_0c = {round(i_0cxle-4, 3)} A/cmz")
U_act = []
for j in i:
U_act.append((R*Ts/(alpha_c*F))*np.log(j+i_0c))

# Mass transport calculation (cathode side only, as anode side losses are neglectable)
print(f"i_lim = {round(i_limxle-4, 1)} A/cmz")
Um =[]
for j in i:
if i_lim/(i_lim-j) = 0:
U_m.append((R*Ts/(nxF))xnp.log(i_lim/(i_1lim-3j)))
else:
U_m.append(float('nan'))

# Ohmic losses
U_ohm = R_1 * i

##Ht Calculation of the resulting voltage

# Cell voltage
U_cell = U_oc - U_act - U_m - U_ohm

iHHt Power density

Pd = [U_cell[e] * i[e] for e in range(len(i))] #Hw/m=]

#HHt Mass estimation

def mass(A, N_cell, e_GDL):
[ ]component = ["End Plate", "Bipolar Plate", "Gasket", "GDL", "PEM", "GDL", "Gasket", "Bipolar Plate", "End Plate"] #
m2
thicknesses = [0.0050, 0.0020, 0.0002, e _GDL, 0.0001, e _GDL, 0.0002, 0.002, 0.005] #{m]
densities = [2800, 1750, 2300, 600, 1900, 600, 2300, 1750, 2800] #kg/m"3]
occurences = [1, N_cell, N_cell, N_cell, N_cell, N_cell, N_cell, 1, 1] #-]
m=20
# length = 0
for idx in range(len(thicknesses)):
m += A % thicknesses[idx] * densities[idx] * occurences[idx]
# length += thicknesses[idx] * occurences[idx]
return m #, length

tHHt Efficiency
# _ Definition of the efficiency:__

# We define the efficiency of a fuel cell as the voltage density provided divided by the chemical power consumed
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# $U_s$: volatge delivered by the stack<br>
# $U_{s, th}$: Theorical volatge deliverable by the chemical reaction

HHt Design points
# _ The performance function:_ \
# The performance function is defined by user above

# _ The best trade-off between efficiency and mass:__\
# An other available design point is the best ratio efficiency over mass. This design point can be selected by user

# _ The best power / lower mass:__\
# The last design point available is the best power, which is also the lower mass design point

#Ht Efficiency calculation
Eff = [0 for idx in range(len(i))]
for idx in range(len(Eff)):
Eff[idx] = U_cell[idx] / U_oc #H-]

Is = Ps / Us #HA] Intensity of the current provided by the stack
N_cell = [Us / U_cell[e] for e in range(len(i))]

A = [Is / i[e] for e in range(len(i))]

m = [mass(A[e], N_cell[e], delta) for e in range(len(i))] # kgl

Fun_perf = [0 for idx in range(len(i))]
Eff_mass = [0 for idx in range(len(i))]
Pd_times_eff = [0 for idx in range(len(i))]

for idx in range(len(i)):
Fun_perf[idx] = np.max([0, F_perf(Eff[idx], K_m=K_m, m=m[idx])])
Eff_mass[idx] = np.max([0, Eff[idx] / m[idx]])
Pd_times_eff[idx] = np.max([0, Pd[idx] = Eff[idx]])

#H# Calculation of the design points

# Optimum values

max_Pd = 0

best_Perf = -1e20

best_Eff_m = 0

min_m = 1e20

for idx in range(len(i)):

if Pd[idx] > max_Pd:

max_Pd = Pd[idx]
idx_max_Pd = idx

if Fun_perf[idx] > best_Perf:
best_Perf = Fun_perf[idx]
idx_best_Perf = idx

if Eff_mass[idx] > best_Eff_m:
best_Eff_m = Eff_mass[idx]
idx_best_Eff_m = idx

if m[idx] < min_m:
min_m = m[idx]
idx_min_m = idx

#Ht Get experimental data
# To plot experimental data on our V-I diagram
import exp_data as exp

#HHt V-I plot
x_scale = le-4 # Change from [A/m2] to [A/cmz]

max_power_VI = (i[idx_max_Pd]xx_scale, U_cell[idx_max_Pd]) # V-I coordinates of maximum power

best_perf_VI = (i[idx_best_Perflxx_scale, U_cell[idx_best_Perf]) # V-I coordinates of best performance
best_eff_m_VI = (i[idx_best_Eff_m]xx_scale, U_cell[idx_best_Eff_m]) # V-I coordinates of best efficiency/mass
min_mass_VI = (i[idx_min_m]*x_scale, U_cell[idx_min_m]) # V-I coordinates of minimum mass

# Bi-axis graph

VIfig, ax = plt.subplots()

ax.plot(i*x_scale, U_cell, color="blue", zorder=99, label="V-I curve")

ax.plot(i*x_scale, Eff, color="orange", zorder=99, label="Efficiency")

ax.plot(i*x_scale, Fun_perf, color="green", zorder=99, label="Perf. function")

# ax.plot(ixx_scale, Eff_mass, color="cyan", label=f"$\epsilon$/mass") # Scale not adapted
ax.scatter(max_power_VI[0], max_power_VI[1], color="red", marker="x", s=100, zorder=100, label="$P_{{max}}$")

ax.scatter(best_perf_VI[0], best_perf_VI[1], color="green", marker="x", s=100, zorder=100, label=f"$F_{{perf, max}}$")

ax.text(best_perf_VI[0]+max(ixx_scale)*0.005, best_perf_VI[1]+max(U_cell)*0.01, "$F_{{perf, max}}$", zorder=100,
ha="left", va="bottom")

ax.scatter(min_mass_VI[@], min_mass_VI[1], color="orange", marker="x", s=30, zorder=100, label=f"$m_{{min}}$")



327 ax.tgxt(minjmass_VI[0]+max(i*x_sca1e)*0.002, min_mass_VI[1]+max(U_cell)*0.015, "$m_{{min}}$", zorder=101, ha="left",
va="bottom"

328 ax{?cat§$§(gest eff_m_VI[0], best_eff_m_VI[1], color="cyan", marker="x", s=100, zorder=100, label=f"$\epsilon /
m_{{max

329 ax.text(best_eff_m_VI[0]-max(i*x_scale)*0.03, best_eff_m_VI[1]+max(U_cell)*0.015, "$\epsilon / m_{{max}}$", zorder=100,
ha="left", va="bottom")

330

331 # Formatting

332 ax.set_xlabel("Current density [A/cm2]", fontsize = 12)

333 ax.set_ylabel("Cell voltage [V]", color="blue", fontsize=12)

334 ax.set_ylim([0, np.ceil((max(U_cell)+0.1)*10)/10])

335 ax.grid()

336 ax.set_yticks(np.arange(0, max(U_cell)+0.1, 0.1))

337 ax2=ax.twinx()

338 ax2.plot(ixx_scale, Pd, color="red")

339 # ax2.plot(i*x_scale, Pd_times_eff, color="darkred", label="Power dens. x eff")

340 # ax2.plot(ixx_scale, m, color="cyan")

341 # ax2.plot(ixx_scale, N_cell, color="magenta")

342 ax2.set_ylabel("Power density [W/m2]",color="red",fontsize=12)

343 ax2.set_ylim([0, np.ceil(max(Pd)/1000)*1000])

344 lgd = ax.legend(loc="lower center", bbox_to_anchor=(1.38, -0.025))

345 plt.xticks(np.arange(0, i[np.where(np.isnan(U_cell))][@]*x_scale+0.2, 0.2))

346 plt.show()

347

348 # Experimental data

349 Datafig = plt.figure()

350 plt.plot(ixx_scale, U_cell, color="blue", zorder=99, label="V-I curve"

351

352 plt.scatter(exp.nafion117_e175[:, 0], exp.nafion117_e175[:, 11, zorder=77, alpha=0.5, marker="s", c="lightblue",
label="e = 175uym, T = 80°C")

353 plt.scatter(exp. Ea§10n117 el100[:, 0], exp.nafionll7_el00[:, 1], zorder=80, alpha=0.5, marker="+", c="darkred", label="e

= 100pym, T = 70

354 %It scatter(exp nafion 70de% el100[:, 0], exp.nafion_70deg_el00[:, 1], zorder=79, alpha=0.5, marker=""", c="green",
abel= = 100pm, T =

355

356 # Formatting

357 plt.xlabel("Current density [A/cm2]", fontsize = 12)

358 plt.ylabel("Cell voltage [V]", color="blue", fontsize=12)

359 plt.ylim([0, np.ceil((max(U_cell)+0.1)*10)/10])

360 plt.grid()

361 plt.legend()

362 plt.yticks(np.arange(0, max(U_cell)+0.1, 0.1))

363 plt.xticks(np.arange(@, i[np.where(np.isnan(U_cell))][0]*x_scale+0.2, 0.2))

364 plt.show()

365

366

367 #HH# Choice of design point

368

369 dp = best_perf_VI # Best performance

370 # dp = best_eff_m_VI # Best efficiency/mass

371 # dp = min_mass_VI # Also P_max

372

373

374 At Calculation of A and N_cell

375

376 def area(Is, i): # Is [A] / i [A/cm?]

377 return Is / (i/x_scale) # A [mz]

378

379 def cell_number(Us, U):

380 return np.ceil(Us/U)

381

382

383 #HHt Test for reaching the maximum power

384

385 A_dp = area(Is, dp[o])

386 N_cell_dp = cell_number(Us, dpl[1])

387 m_dp = mass(A_dp, N_cell_dp, delta)

388 P_maxi = max_Pd*A_dp*N_cell_dp

389

390 power_margin = 5 #{%] Margin percentage over the maximum power to reach

391

392 print(f" Max power margin percentage: {power_margin:5} [%]")

393 print(f" Current sizing power: {int(Ps):5} [w]")

394 print(f" Stack maximum power available: {int(P_maxi):5} [w]")

395 print(f"Required maximum power (margin included): {int(np.max(P) * (1 + power_margin/100)):5} [W]\n")

396

397 if P_maxi > np.max(P) * (1 + power_margin/100):

398 ok = True

399 print("[+] The current design is compatible with the power mission profile.")

400 else:

401 ok = False

402 print("[-] The current design is too low to satisfy the maximum power required by the mission profile.")

403

404

4@5 | tHHt Determination of the best design point compatible with the mission profile
406



407 iter = 0
408 while ok = False:

409 # Choice of a new Ps

410 eps_percent = 0.1 #%]

411 eps_Ps = eps_percent/100 * (np.max(P) - np.min(P)) #HW] Step of additional power

412 Ps = Ps + eps_Ps #{W] Calculation of the new Ps value

413

414 # Update all the values that are function of Ps

415 Is = Ps / Us #HA] Current provided by the stack

416 A = [area(Is, i[elxx_scale) for e in range(len(i))]

417 m = [mass(A[e], N_cell[e], delta) for e in range(len(i))] # kgl

418 # print(m)

419

420 Fun_perf = [0 for idx in range(len(i))]

421 Eff_mass = [0 for idx in range(len(i))]

422

423 for idx in range(len(i)):

424 Fun_perf[idx] = F_perf(Eff[idx], K_m=K_m, m=m[idx])

425 Eff_mass[idx] = Eff[idx] / m[idx]

426

427 max_Pd = 0

428 best_Perf = -1e20

429 best_Eff_m = 0

430 min_m = 1e20

431 for idx in range(len(i)):

432 if Pd[idx] > max_Pd:

433 max_Pd = Pd[idx]

434 idx_max_Pd = idx

435

436 if Fun_perf[idx] > best_Perf:

437 best_Perf = Fun_perf[idx]

438 idx_best_Perf = idx

439

440 if Eff_mass[idx] > best_Eff_m:

441 best_Eff_m = Eff_mass[idx]

442 idx_best_Eff_m = idx

443

bbb if m[idx] < min_m:

445 min_m = m[idx]

446 idx_min_m = idx

447 max_power_VI = (i[idx_max_Pd]*x_scale, U_celll[idx_max_Pd]) # V-I coordinates of maximum power

448

449 # Calculate the stack maximum power available

450 i_max_power = max_power_VI[0]

451 U_cell_max_power = max_power_VI[1]

452

453 A_dp = area(Is, dp[o])

454 N_cell_dp = cell_number(Us, dp[1])

455 P_maxi = max_Pd*A_dp*N_cell_dp

456

457 iter += 1

458

459 if P_maxi > np.max(P) * (1 + power_margin/100):

460 ok = True # Value of Ps is OK

461 else:

462 ok = False # Value of Ps is still too low, new iteration...

463

464 print(f" Number of iterations: {int(iter):8}")

465 print(f" Sizing power increase: {round((1-Ps_init/Ps)*100, 1):8} [%]")

466 print(f" Sizing power: {round(Ps, 1):8} [w]")

467 | print(f"Stack maximum power available: {round(P_maxi, 1):8} [w]")

468 if np.max(P) * (1 + power_margin/100) = np.max(P): print(f" Maximum power to reach: {round(np.max(P) * (1 +
power_margin/100), 1g:8} Twl"

469  print(f" Required maximum power: {round(np.max(P), 1):8} [w]")

470

471 missionfig, ax = plt.subplots(1)

472 plt.plot(t, P, 'r', zorder=90)

473 plt.scatter(t, P, c='b', marker='+', s=80, zorder=99)

474 plt.plot([min(t), max(t)], [Ps_init, Ps_init], 'm-.', lw=0.8, zorder=1, label=f"Mean power: {int(Ps_init)} [w]")
475 plt.plot([min(t), max(t)], [Ps, Ps], 'g-.', lw=1.1, zorder=1, label=f"Actual sizing power: {int(Ps)} [w]")
476 plt.grid()

477 plt.title("Power mission profile")

478 plt.xlabel("Time [s]")

479  plt.ylabel("Power [W]")

480 plt.legend()

481 plt.show()

482

483

484 | tHHt Required specifications for the stack

485

486 # Global specifications

487 N_cell = cell_number(Us, dp[1])

488 A = area(Is, dp[0])

489 m = mass(A, N_cell, delta)

490
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# Specifications at mean power: we determine the working point on V-I diagram

power = Ps

gap = power - Ps_init + 1

idx = np.where(i =

i[np.abs(i-dp[@]*les).argmin()])[0][0]

while abs(power - Ps_init) < gap:

idx = idx - 1
gap = abs(power

- Ps_init)

power = i[idx]*AxU_cell[idx]*N_cell

i_mean = i[idx]

Is_mean = i_mean * A
Us_mean = Ps_init/Is_mean
eff_mean =

((Us_mean/N_cell)/U_oc)*100

print("Global specifications:")

print(f"
print(f"
print(f"

Number of cells in series:

{round(N_cell):6} [-1")
{round(Axle4, 1):6} [cm2
{round(m, 1):6} [kgl\n")

Cell area:
Stack mass:

print("Specifications at mean power:")

print(f"
print(f"

print(f"
print(f"

Stack operating voltage:
Stack operating current:
print(f"Stack operating current density:

Load of the stack:

Mean efficiency: {round(eff_mean, 2):6} [

#HHt H_2 and 0_2 consumption, H_2_0 generation

# Knowing the
consumption.

mol_mass_H2 =
mol_mass_02 =

0.002
0.032

#H kg/mol] H2 molar mass
#Hkg/mol] 02 molar mass

mol_mass_H20 = 0.018 #{kg/mol] H20 molar mass

M_H2_cons =
M_02_cons =
M_H20_gen =

print(f"
print(f"
print(f"

N_cell * (Is_mean / (n*F)) * mol_mass_H2 * 3600
N_cell * (Is_mean / (2*nxF)) * mol_mass_02 * 3600
N_cell * (Is_mean / (nxF)) * mol_mass_H20 * 3600

H_2 consumed: {round(M_H2_cons, 3):5} [kg/h]")
0_2 consumed: {round(M_02_cons, 3):5} [kg/hl")
H_2_0 generated: {round(M_H20_gen, 3):5} [kg/hl")

#Ht Export the results

import datetime
date =
txtdate =

datetime.date.today()
date.strftime("%B %d, %Y")

time = datetime.datetime.now().strftime("%Hh%M")

if print_results_to_
with open(f"exports/Sizing_results - {date} - {time}.txt",
export_file.
export_file.

export_file.
export_file.
export_file.
export_file.
export_file.

export_file

export_file.

export_file.
export_file.
export_file.
export_file.
export_file.
export_file.
export_file.
export_file.
export_file.
export_file.

power]\n")

export_file.
export_file.
export_file.
export_file.
export_file.

write(f"\t Mean power: Ps =
write(f"\t Max power available: Pmax =
write(f"\t Operating voltage: Us =
write(f"\t Hydrogen inlet pressure: P_H2 =
write(f"\t Oxygen inlet pressure: P_02

write(f"\t Operating temperature: Ts =

txt = True:

write("RESULTS OF THE PEMFC SIZING PROCESS\n\
write(f"Results of {txtdate} - {time}\n\n\n")

write(" > Input parameters\n")

write(" > Results\n")
write(" > Global specifications\n")
write(f"\tNumber of cells in series: N_cell =

write(f"\t Cell area: A =
write(f"\t Stack mass: m =
write(" > Specifications at mean power\n")

write(f"\t Stack operating voltage: Us
write(f"\t Stack operating current: Is
write(f"\tStack operating current density: i

write(f"\t Load of the stack:
write(f"\t Mean efficiency:
write(" > Fuel cell consumption and emissio
write(f"\tHydrogen consumed: H2_cons =
write(f"\t Oxygen consumed: 02_cons =
write(f"\t Water emitted: H20_gen =

W,

1"

{round(Us_mean, 0):6} [VI]")
{round(Is_mean, 0):6} [A]")
{round(i_meanxle-4, 2):6} [A/cmz]")

{round((Ps_init/P_maxi)*100, 2):6} [% of max power]")

%1")

n")

equation of the chemical reaction in the cell and the Faraday’s law, we can easily find H2 and 02

encoding="utf8") as export_file:

= {int(Ps):5} [w]l\n")
{int(P_maxi):5} [w]l\n")
{Us:5} [VI\n")

{P_H2:5} [bar]\n")

= {P_air:5} [bar]\n")
{Ts-273:5} [°C]\n\n")

{round(N_cell):5}\n")
{round(A*le4, 1):5} [cmz]\n")
{round(m, 1):5} [kgl\n\n")

_mean
_mean
_mean

Ls

eff
n\n")

{round(Us_mean, 0):5} [VI\n")
{round(Is_mean, 0):5} [A]\n")
{round(i_meanxle-4, 2):5} [A/cmz]\n")
{round((Ps_init/P_maxi)*100, 2):5} [% of max

{round(eff_mean, 2):5} [%]\n\n")

{round(M_H2_cons, 3):5} [kg/hI\n")
{round(M_02_cons, 3):5} [kg/hI\n")
{round(M_H20_gen, 3):5} [kg/h1\n")

VIfig.savefig(f"exports/V-I diagram - {date} - {time}", dpi=300, bbox_extra_artists=1gd)
missionfig.savefig(f"exports/Mission Profile - {date} - {time}", dpi=300)
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